893 resultados para Real-time polymerase chain reaction (real-time PCR)
Resumo:
A importância do cão como reservatório de L. infantum chagasi no meio urbano tem estimulado a realização de inúmeros trabalhos de avaliação de técnicas de diagnóstico, uma vez que este procedimento, quando realizado corretamente, torna-se um importante passo na prevenção da doença em humanos. Dentre os métodos de diagnóstico, as técnicas moleculares têm adquirido destaque. Objetivou-se neste trabalho verificar o desempenho da Reação em Cadeia da Polimerase (PCR) e da PCR em tempo real (qPCR) para diagnóstico da Leishmaniose Visceral Canina (LVC) utilizando diferentes amostras biológicas. Para tanto foram utilizados 35 cães provenientes de uma área endêmica para LVC, onde foram utilizados para o diagnóstico molecular, aspirado de medula óssea, fragmentos de linfonodo e baço. Neste estudo a qPCR foi capaz de detectar um maior número de animais positivos quando comparada com a PCR. Já entre as diferentes amostras biológicas utilizadas não foi observada diferença significativa na detecção de DNA de L. infantumchagasi por meio da PCR e qPCR. Mesmo assim, considerando a facilidade de obtenção, o linfonodo pode ser considerada como a melhor amostra para diagnóstico molecular da infecção por L. infantum chagasi.
Resumo:
Polymorphisms of glutathione transferases (GST) are important genetic determinants of susceptibility to environmental carcinogens (Rebbeck, 1997). The GSTs are a multigene family of dimeric enzymes involved in detoxification, and, in a few cases, the bioactivation of a variety of xenobiotics (Hayes et al., 1995). The cytosolic GST enzyme family consists of four major classes of enzymes, referred to as alpha, mu, pi and theta. Several members of this family (for example, GSTM1, GSTT1 and GSTP1) are polymorphic in human populations (Wormhoudt et al., 1999). Molecular epidemiology studies have examined the role of GST polymorphisms as susceptibility factors for environmentally and/or occupationally induced cancers (Wormhoudt et al., 1999). In particular, case-control studies showed a relationship between the GSTM1 null genotype and the development of cancer in association with smoking habits, which has been shown for cancers of the respiratory and gastrointestinal tracts as well as other cancer types (Miller et al., 1997). Only a few molecular epidemiological studies addressed the role of GSTT1 and GSTP1 polymorphisms in cancer susceptibility. Since GSTP1 is a key player in biotransformation/bioactivation of benzo(a)pyrene, GSTP1 may be even more important than GSTM1 in the prevention of tobacco-induced cancers (Harries et al., 1997; Harris et al., 1998). To date, this relationship has not been sufficiently addressed in humans. Comprehensive molecular epidemiological studies may add to the current knowledge of the role of GST polymorphisms in cancer susceptibility and extent of the knowledge gained from approaches that used phenotyping, such as GSTM1 activity as it relates to trans-stilbene oxide, or polymerase chain reaction (PCR) based genotyping of polymorphic isoenzymes (Bell et al., 1993; Pemble et al., 1994; Harries et al., 1997).
Resumo:
Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.
Resumo:
A multiplex real-time PCR was developed for the detection and differentiation of two closely related bovine herpesviruses 1 (BoHV-1) and 5 (BoHV-5). The multiplex real-time PCR combines a duplex real-time PCR that targets the DNA polymerase gene of BoHV-1 and BoHV-5 and a real-time PCR targeting mitochondrial DNA, as a house-keeping gene, described previously by Cawthraw et al. (2009). The assay correctly identified 22 BoHV-1 and six BoHV-5 isolates from the Biosecurity Sciences Laboratory virus collection. BoHV-1 and BoHV-5 were also correctly identified when incorporated in spiked semen and brain tissue samples. The detection limits of the duplex assay were 10 copies of BoHV-1 and 45 copies of BoHV-5. The multiplex real-time PCR had reaction efficiencies of 1.04 for BoHV-1 and 1.08 for BoHV-5. Standard curves relating Ct value to template copy number had correlation coefficients of 0.989 for BoHV-1 and 0.978 for BoHV-5. The assay specificity was demonstrated by testing bacterial and viral DNA from pathogens commonly isolated from bovine respiratory and reproductive tracts. The validated multiplex real-time PCR was used to detect and differentiate BoHV-1 and BoHV-5 in bovine clinical samples with known histories.
Resumo:
The bacterium Coxiella burnetii, which has a wide host range, causes Q fever. Infection with C burnetii can cause abortions, stillbirth, and the delivery of weak offspring in ruminants. Coxiella burnetii infection is zoonotic, and in human beings it can cause chronic, potentially fatal disease. Real-time polymerase chain reaction (PCR) is increasingly being used to detect the organism and to aid in diagnosis both in human and animal cases. Many different real-time PCR methods, which target different genes, have been described. To assess the comparability of the C. burnetii real-time PCR assays in use in different European laboratories, a panel of nucleic acid extracts was dispatched to 7 separate testing centers. The testing centers included laboratories from both human and animal health agencies. Each laboratory tested the samples using their in-house real-time PCR methods. The results of this comparison show that the most common target gene for real-time PCR assays is the IS1111 repeat element that is present in multiple copies in the C. burnetii genome. Many laboratories also use additional real-time PCR tests that target single-copy genes. The results of the current study demonstrate that the assays in use in the different laboratories are comparable, with general agreement of results for the panel of samples.
Resumo:
Phenotypic identification of Gram-negative bacteria from respiratory specimens of patients with cystic fibrosis carries a high risk of misidentification. Molecular identification techniques that use single-gene targets are also susceptible to error, including cross-reaction issues with other Gram-negative organisms. In this study, we have designed a Pseudomonas aeruginosa duplex real-time polymerase chain reaction (PCR) (PAduplex) assay targeting the ecfX and the gyrB genes. The PAduplex was evaluated against a panel of 91 clinical and environmental isolates that were presumptively identified as P. aeruginosa. The results were compared with those obtained using a commercial biochemical identification kit and several other P. aeruginosa PCR assays. The results showed that the PAduplex assay is highly suitable for routine identification of P. aeruginosa isolates from clinical or environmental samples. The 2-target format provides simultaneous confirmation of P. aeruginosa identity where both the ecfX and gyrB PCR reactions are positive and may also reduce the potential for false negatives caused by sequence variation in primer or probe targets.
Resumo:
Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.
Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.
Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.
Setting: Critical care departments within NHS hospitals in the north-west of England.
Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation.
Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.
Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.
Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.
Resumo:
A real-time polymerase chain reaction (PCR) test was developed on the basis of the Leishmania glucose-6-phosphate dehydrogenase locus that enables identification and quantification of parasites. Using two independent pairs of primers in SYBR-Green assays, the test identified etiologic agents of cutaneous leishmaniasis belonging to both subgenera, Leishmania (Viannia) and Leishmania (Leishmania) in the Americas. Furthermore, use of TaqMan probes enables distinction between L. (V.) braziliensis or L. (V.) peruviania from the other L. (Viannia) species. All assays were negative with DNA of related trypanosomatids, humans, and mice. The parasite burden was estimated by normalizing the number of organisms per total amount of DNA in the sample or per host glyceraldehyde-3-phosphate dehydrogenase copies. The real-time PCR assay for L. (Leishmania) subgenus showed a good linear correlation with quantification on the basis of a limiting dilution assay in experimentally infected mice. The test successfully identifies and quantifies Leishmania in human biopsy specimens and represents a new tool to study leishmaniasis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Smoking is a well-known risk factor for destructive periodontal disease, but its relationship with periodontal status and subgingival microbiota remains unclear. Inherent limitations of microbiological methods previously used may partly explain these mixed results, and real-time polymerase chain reaction (PCR) has been presented as a valid alternative. The aim of the present study was to investigate the clinical condition and microbiological profile of patients with chronic periodontitis as related to the habit of smoking.Methods: Fifty patients (33 to 59 years old), 25 smokers and 25 never-smokers, constituted the sample. The visible plaque index (VPI), gingival bleeding index (GBI), bleeding on probing (BOP), periodontal probing depth (PD), clinical attachment loss (CAL), and gingival crevicular fluid (GCF) volume were recorded. Real-time PCR quantified Porphyromonas gingivalis, Micromonas micros, Dialister pneumosintes, Actinobacillus actinomycetemcomitans and total bacteria in subgingival samples.Results: Smokers and never-smokers showed similar values for VPI, GBI, and BOP. Smokers had deeper PD in buccal/lingual sites and higher CAL independently of the tooth surface. The GCF volume was smaller in smokers, independent of the PD. Similar amounts of total bacteria and P. gingivalis were observed for both groups. Significantly higher numbers of D. pneumosintes and M. micros were present in smokers and associated with moderate and deep pockets. When heavy smokers were considered, higher counts of total bacteria, M. micros, and D. pneumosintes were observed.Conclusions: Smoking seems to have a detrimental impact on the periodontal status and microbiological profile of patients with periodontitis. Compared to never-smokers, smokers had deeper pockets, greater periodontal destruction, and higher counts of some putative periodontal pathogens.
Resumo:
Background: Infectious diarrhea can be caused by bacteria, viruses, or protozoan organisms, or a combination of these. The identification of co-infections in dogs is important to determine the prognosis and to plan strategies for their treatment and prophylaxis. Although many pathogens have been individually detected with real-time polymerase chain reaction (PCR), a comprehensive panel of agents that cause diarrhea in privately owned dogs has not yet been established. The objective of this study was to use a real-time PCR diarrhea panel to survey the frequencies of pathogens and co-infections in owned dogs attended in a veterinary hospital with and without diarrhea, as well the frequency in different countries. Feces samples were tested for canine distemper virus, canine coronavirus, canine parvovirus type 2 (CPV-2), Clostridium perfringens alpha toxin (CPA), Cryptosporidium spp., Giardia spp., and Salmonella spp. using molecular techniques.Results: In total, 104 diarrheic and 43 control dogs that were presented consecutively at a major private veterinary hospital were included in the study. Overall, 71/104 (68.3%) dogs with diarrhea were positive for at least one pathogen: a single infection in 39/71 dogs (54.9%) and co-infections in 32/71 dogs (45.1%), including 21/32 dogs (65.6%) with dual, 5/32 (15.6%) with triple, and 6/32 (18.8%) with quadruple infections. In the control group, 13/43 (30.2%) dogs were positive, all with single infections only. The most prevalent pathogens in the diarrheic dogs were CPA (40/104 dogs, 38.5%), CPV-2 (36/104 dogs, 34.6%), and Giardia spp. (14/104 dogs, 13.5%). CPV-2 was the most prevalent pathogen in the dual co-infections, associated with CPA, Cryptosporidium spp., or Giardia spp. No statistical difference (P = 0.8374) was observed in the duration of diarrhea or the number of deaths (P = 0.5722) in the presence or absence of single or co-infections.Conclusions: Diarrheic dogs showed a higher prevalence of pathogen infections than the controls. Whereas the healthy dogs had only single infections, about half the diarrheic dogs had co-infections. Therefore, multiple pathogens should be investigated in dogs presenting with diarrhea. The effects of multiple pathogens on the disease outcomes remain unclear because the rate of death and the duration of diarrhea did not seem to be affected by these factors.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate, in a prospective pilot study, the feasibility of identifying pathogens in urine using real-time polymerase chain reaction (PCR), and to compare the results with the conventional urine culture-based procedures.
Resumo:
The impact of a semiquantitative commercially available test based on DNA-strip technology (microIDent®, Hain Lifescience, Nehren, Germany) on diagnosis and treatment of severe chronic periodontitis of 25 periodontitis patients was evaluated in comparison with a quantitative in-house real-time PCR. Subgingival plaque samples were collected at baseline as well as at 3, 6, and 12 months later. After extracting DNA, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and several other periodontopathogens were determined by both methods. The results obtained by DNA-strip technology were analyzed semiquantitatively and additionally quantitatively by densitometry. The results for the 4 major periodontopathogenic bacterial species correlated significantly between the 2 methods. Samples detecting a high bacterial load by one method and negative by the other were always found in less than 2% of the total samples. Both technologies showed the impact of treatment on microflora. Especially the semiquantitative DNA-strip technology clearly analyzed the different loads of periodontopathogens after therapy and is useful in microbial diagnostics for patients in dental practices.
Resumo:
BACKGROUND: Few reports of the utilization of an accurate, cost-effective means for measuring HPV oncogene transcripts have been published. Several papers have reported the use of relative quantitation or more expensive Taqman methods. Here, we report a method of absolute quantitative real-time PCR utilizing SYBR-green fluorescence for the measurement of HPV E7 expression in cervical cytobrush specimens. RESULTS: The construction of a standard curve based on the serial dilution of an E7-containing plasmid was the key for being able to accurately compare measurements between cervical samples. The assay was highly reproducible with an overall coefficient of variation of 10.4%. CONCLUSION: The use of highly reproducible and accurate SYBR-based real-time polymerase chain reaction (PCR) assays instead of performing Taqman-type assays allows low-cost, high-throughput analysis of viral mRNA expression. The development of such assays will help in refining the current screening programs for HPV-related carcinomas.