957 resultados para Real data
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.
Resumo:
Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.
Resumo:
We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga et al. [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga et al. in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k-nearest neighbors, which supports the conjecture by Quian Quiroga et al. in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.
Resumo:
We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k-nearest neighbors, which supports the conjecture by Quian Quiroga in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
This paper presents a comparative analysis of linear and mixed modelsfor short term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay.The series is interpolated with a linear predictor which minimizes theforecast mean square error. The linear models are seasonal ARIMA models and themixed models have a linear component and a non linear seasonal component.The non linear component is estimated by a non parametric regression of dataversus time. Short term forecasts, no more than two days ahead, are of interestbecause they can be used by the port authorities to notice the fleet.Several models are fitted and compared by their forecasting behavior.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
For the first time, we introduce and study some mathematical properties of the Kumaraswamy Weibull distribution that is a quite flexible model in analyzing positive data. It contains as special sub-models the exponentiated Weibull, exponentiated Rayleigh, exponentiated exponential, Weibull and also the new Kumaraswamy exponential distribution. We provide explicit expressions for the moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and Renyi entropy. The moments of the order statistics are calculated. We also discuss the estimation of the parameters by maximum likelihood. We obtain the expected information matrix. We provide applications involving two real data sets on failure times. Finally, some multivariate generalizations of the Kumaraswamy Weibull distribution are discussed. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.