957 resultados para Real blow up
Resumo:
The nonlinear dynamics of a rotating magnetoplasma consisting of electrons, positrons and stationary positive ions is considered. The basic set of hydrodynamic and Poisson equations are reduced to a Zakharov-Kuznetsov (ZK) equation for the electric potential. The ZK equation is solved by applying an improved modified extended tanh-function method (2008 Phys. Lett. A 372 5691) and its characteristics are investigated. A set of new solutions are derived, including localized solitary waves, periodic nonlinear waveforms and divergent (explosive) pulses. The characteristics of these nonlinear excitations are investigated in detail.
Resumo:
Esta dissertação é um estudo sobre o conto Las babas del diablo, de Julio Cortázar, e do filme Blow-Up, de Michelangelo Antonioni. Entre as inúmeras portas de entrada para abordar essas duas obras, optamos por explorá-las pelo caminho da fotografia, que é, a um só tempo, eixo temático ficcional do conto e do filme e também mola propulsora para um debate teórico sobre o fotográfico. Inserida em uma perspectiva comparatista, lançamos mão da intertextualidade e da interdisciplinaridade, conceitos fundamentais da Literatura Comparada. Nesse sentido, abordamos inicialmente as relações de produtividade entre os próprios textos e, depois, entre textos e imagens. Posteriormente, aproveitando uma proposta de Cortázar de comparar a fotografia com o conto, passamos a explorar a fotografia no seu âmbito teórico. Dois autores são basilares nesse ponto do trabalho: Roland Barthes e Philippe Dubois. O primeiro, na obra A câmara clara, coloca-se como mediador de toda análise sobre a fotografia, procedendo, dentro de uma perspectiva teórica, de forma semelhante aos personagens de Las babas del diablo e de Blow-Up, estes no mundo da ficção. Já Dubois, em O ato fotográfico, debate algumas das propostas de Barthes e faz um apanhado histórico bastante produtivo na medida em que aborda as três percepções da fotografia desde sua invenção até os dias atuais. Ao alçarmos a fotografia como mediadora teórica principal do corpus deste trabalho, realizamos um novo recorte, detendo-nos naqueles eixos levantados por Dubois e por Barthes que, na leitura de Las babas del diablo e de Blow-Up, nos pareceram exigir uma exploração mais produtiva. Nesse momento, estarão presentes questões relacionadas tanto à fotografia em si quanto às relações que ela estabelece com o fotógrafo e com aquele que a observa, sempre levando em conta as tentativas de tradução da imagem fotográfica para o texto e para o filme.
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.
Resumo:
2000 Mathematics Subject Classification: 35K55, 35K60.
Resumo:
L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites. Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat.
Resumo:
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.
Resumo:
Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement et de la contraction symplectique, que nous définissons relative à une sous-variété lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que nous éclatons une configuration suffisament symmetrique des plongements de boules, nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement ~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier le packing relatif dans (ℂP²,ℝP²).
Resumo:
Esta pesquisa aborda o atendimento à criança desvalida na capital da província do Grão Pará, entre os anos 1870-1889, dando destaque para o Instituto Paraense de Educandos Artífices, fundado em 1872. As questões que mobilizaram todo o processo investigativo foram: 1) Quem eram as crianças que a legislação relacionada à instrução pública no período imperial chamava de desvalidas, de menos favorecidas, e que na província do Grão Pará eram consideradas também degradadas? 2) Qual a relação dessas crianças com o Estado e deste para com essas crianças? 3) Que políticas públicas foram pensadas no sentido de garantir o atendimento a essas crianças? 4) Qual a importância do Instituto Paraense de Educandos Artífices no contexto da província com a expansão da exploração da borracha? Com base nessas questões, estabeleceu-se como objetivo geral “compreender, por meio de uma análise interrelacional de acontecimentos que se articulam à existência do Instituto de Artífices, a infância na capital da província do Grão Pará, entre os anos 1870-1889, tendo em vista a sua relação com os ideários de formação do processo civilizador das populações do norte do Brasil”. No plano teórico-metodológico, essa análise inspirou-se na Nova História ao tentar aproximar os dados documentais das histórias social e cultural, trazendo à superfície o contexto do lugar na sua dimensão micro/macro. As fontes primárias utilizadas foram os relatórios dos presidentes da província e dos diretores do Instituto, a legislação educacional local, minutas de ofícios e artigos de periódicos de circulação na cidade de Belém à época. Os resultados revelam, dentre inúmeros achados, que o atendimento à criança desvalida, degradada, da província do Grão Pará, entre os anos 1870-1889, teve no Instituto sua principal política. Isso representou reconhecer, com base nos dados que emergiram dos documentos em articulação com a bibliografia estudada, que as políticas de atendimento à criança na província do Grão Pará, e o Instituto em destaque, no período já ressaltado, configuram-se em instrumentos de consolidação dos ideais iluministas produzidos na Europa, materializados no projeto civilizador de transformar índios e mestiços em cidadãos “distinctos e morigerados”. Tal tentativa contou com as condições favoráveis produzidas pela economia da borracha que, no imaginário de governantes, homens de letras e de uma elite local, constituiu a Belém da belle époque. Não alheia a todas as mudanças ocorridas nos planos econômico e político, os desfavorecidos da fortuna, à margem das vantagens promovidas pelas mudanças que se instituíam, trataram de aproveitar as oportunidades oferecidas no plano educacional, mesmo que não aceitassem as condições apresentadas, as regras estabelecidas e as manipulações operadas pela politicagem. Entrando pela porta de trás da modernidade, já que o atendimento educacional ofertado estava muito longe do que se propagandeava, e deveras alheio aos interesses das populações submetidas aos modelos institucionais de educação da província, os dados coletados para o interesse deste estudo indicam que alguma apropriação se deu por parte dos atendidos, mesmo apartada do que havia sido projetado no plano da governação oficial.
Resumo:
Neste trabalho, estudamos propriedades de continuação única para as soluções da equação tipo Schrödinger com um ponto interação centrado em x=0, \\partial_tu=i(\\Delta_Z+V)u, onde V=V(x,t) é uma função de valor real e -\\Delta_Z é o operador escrito formalmente como \\[-\\Delta_Z=-\\frac\\frac{d^2}{dx^2}+Z\\delta_0,\\] sendo \\delta_0 a delta de Dirac centrada em zero e Z qualquer número real. Logo, usamos estes resultados para ver o possível fenômeno de concentração das soluções, que explodem, da equação de tipo Schrödinger não linear com um ponto de interação em x=0, \\[\\partial_tu=i(\\Delta_Zu+|u|^u),\\] com ho>5. Também, mostramos que para certas condições sobre o potencial dependente do tempo V, a equação linear em cima tem soluções não triviais.
Resumo:
We treat two related moving boundary problems. The first is the ill-posed Stefan problem for melting a superheated solid in one Cartesian coordinate. Mathematically, this is the same problem as that for freezing a supercooled liquid, with applications to crystal growth. By applying a front-fixing technique with finite differences, we reproduce existing numerical results in the literature, concentrating on solutions that break down in finite time. This sort of finite-time blow-up is characterised by the speed of the moving boundary becoming unbounded in the blow-up limit. The second problem, which is an extension of the first, is proposed to simulate aspects of a particular two-phase Stefan problem with surface tension. We study this novel moving boundary problem numerically, and provide results that support the hypothesis that it exhibits a similar type of finite-time blow-up as the more complicated two-phase problem. The results are unusual in the sense that it appears the addition of surface tension transforms a well-posed problem into an ill-posed one.
Resumo:
Radial Hele-Shaw flows are treated analytically using conformal mapping techniques. The geometry of interest has a doubly-connected annular region of viscous fluid surrounding an inviscid bubble that is either expanding or contracting due to a pressure difference caused by injection or suction of the inviscid fluid. The zero-surface-tension problem is ill-posed for both bubble expansion and contraction, as both scenarios involve viscous fluid displacing inviscid fluid. Exact solutions are derived by tracking the location of singularities and critical points in the analytic continuation of the mapping function. We show that by treating the critical points, it is easy to observe finite-time blow-up, and the evolution equations may be written in exact form using complex residues. We present solutions that start with cusps on one interface and end with cusps on the other, as well as solutions that have the bubble contracting to a point. For the latter solutions, the bubble approaches an ellipse in shape at extinction.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.