948 resultados para Rate Sensitivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain rate sensitivity measurements are used to identify twinning and changes in deformation mechanisms in a Mg AZ31 alloy over a wide range of temperatures and grain sizes. At low temperatures, there is significant twinning at low strains with strain-rate insensitivity; at large strains, strain rate sensitivity is noted, corresponding to deformation by multiple slip. At high temperatures, there is very little twinning and this leads to a significant strain rate sensitivity from the early stages of deformation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taking polycrystalline cadmium as an example and by utilizing the predicted temperature or strain rate-dependence of the (Hall-Petch) stress-grain size parameters, a reasonably quantitative explanation is given for the grain size dependence of apparent activation volume measurements. The explanation involves the theoretical relation of these measurements to single-crystal measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of strain on the mechanical properties and deformation kinetic parameters of nanotwinned (at) copper is investigated by a series of nanoindentation experiments, which were performed by employing sharp indenters with five varying centerline-to-face angles (psi). Comparison experiments were also conducted on (1 1 0) single crystalline Cu. Experimental results indicate that, unlike coarsegrained materials, nt-Cu is prone to plastic flow softening with large material pile-up around the indentation impression at high levels of strains. Localized detwinning becomes more significant with decreasing psi, concomitant with reduced strain-rate sensitivity (m) and enhanced activation volume (V*). The m of nt-Cu is found to depend sensitively on psi with a variation of more than a factor of 3, whereas V* exhibits a much less sensitive trend. This paper discusses the validation of the experimental techniques and the implications of various deformation kinetic parameters on the underlying deformation mechanisms of nt-Ca. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nanoindentation technique was employed to examine the strain rate sensitivity, m, and its dependence on the structural state of a Zr-based bulk metallic glass (BMG). The free volume content in the BMG was varied by examining samples in the as-cast (AC), shot-peened (SP), and structurally relaxed (SR) states. Hardness values measured at different loading rates and over a temperature range of 300-423 K as well as the strain-rate jump tests conducted in the quasi-static regime at room temperature, show that m is always negative. All the load-displacement (P-h) curves in this temperature regime exhibit serrated load-displacement responses, indicating that the shear band mediated inhomogeneous plastic flow governs deformation. Such localization of flow and associated softening is the raison d'etre for the negative m. Significant levels of pile-up around the indents were also noted. The order in the average values of hardness, pile-up heights, and the displacement bursts on the P-h curves was always such that SR > AC > SP, which is also the order of increasing free volume content. These observations were utilized to discuss the reasons for the negative strain rate sensitivity, and its dependence on the structural state of metallic glasses. It is suggested that the positive values of m reported in the literature for them are possibly experimental artefacts that arise due to large pile ups around the indents which lead to erroneous estimation in hardness values. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two sets of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4 s-1 to 102 s-1 using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and un-notched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two set of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10-4/s to 102/s using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and unnotched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An innovative approach to quantify interest rate sensitivities of emerging market corporates is proposed. Our focus is centered at price sensitivity of modeled investment grade and high yield portfolios to changes in the present value of modeled portfolios composed of safe-haven assets, which define risk-free interest rates. Our methodology is based on blended yield indexes. Modeled investment horizons are always kept above one year thus allowing to derive empirical implications for practical strategies of interest rate risk management in the banking book. As our study spans over the period 2002 – 2015, it covers interest rate sensitivity of assets under the pre-crisis, crisis, and post-crisis phases of the economic cycles. We demonstrate that the emerging market corporate bonds both, investment grade and high yield types, depending on the phase of a business cycle exhibit diverse regimes of sensitivity to interest rate changes. We observe switching from a direct positive sensitivity under the normal pre-crisis market conditions to an inverted negative sensitivity during distressed turmoil of the recent financial crisis, and than back to direct positive but weaker sensitivity under new normal post-crisis conjuncture. Our unusual blended yield-based approach allows us to present theoretical explanations of such phenomena from economics point of view and helps us to solve an old controversy regarding positive or negative responses of credit spreads to interest rates. We present numerical quantification of sensitivities, which corroborate with our conclusion that hedging of interest rate risk ought to be a dynamic process linked to the phases of business cycles as we evidence a binary-like behavior of interest rate sensitivities along the economic time. Our findings allow banks and financial institutions for approaching downside risk management and optimizing economic capital under Basel III regulatory capital rules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interest rate sensitivity assessment framework based on fixed income yield indexes is developed and applied to two types of emerging market corporate debt: investment grade and high yield exposures. Our research advances beyond the correlation analyses focused on co- movements in yields and/or spreads of risky and risk-free assets. We show that correlation- based analyses of interest rate sensitivity could appear rather inconclusive and, hence, we investigate the bottom line profit and loss of a hypothetical model portfolio of corporates. We consider historical data covering the period 2002 – 2015, which enable us to assess interest rate sensitivity of assets during the development, the apogee, and the aftermath of the global financial crisis. Based on empirical evidence, both for investment and speculative grades securities, we find that the emerging market corporates exhibit two different regimes of sensitivity to interest rate changes. We observe switching from a positive sensitivity under the normal market conditions to a negative one during distressed phases of business cycles. This research sheds light on how financial institutions may approach interest rate risk management, evidencing that even plain vanilla portfolios of emerging market corporates, which on average could appear rather insensitive to the interest rate risk in fact present a binary behavior of their interest rate sensitivities. Our findings allow banks and financial institutions for optimizing economic capital under Basel III regulatory capital rules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stress relaxation testing is often utilised for determining whether athermal straining contributes to plastic flow; if plastic strain rate is continuous across the transition from tension to relaxation then plastic strain is fully thermally activated. This method was applied to an aged type 316 stainless steel tested in the temperature range 973–1123 K and to a high purity Al in the recrystallised annealed condition tested in the temperature range 274–417 K. The results indicated that plastic strain is thermally activated in these materials at these corresponding test temperatures. For Al, because of its high strain rate sensitivity, it was necessary to adopt a back extrapolation procedure to correct for the finite period that the crosshead requires to decelerate from the constant speed during tension to a dead stop for stress relaxation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The deformation behavior of an FeAl alloy processed by hot extrusion of water atomized powder has been investigated. Compression tests are performed in the temperature range 1073–1423 K and in the strain rate range 0.001–100 s−1 up to a true plastic strain of 0.5. The flow stress has been found to be strongly dependent on temperature as well as strain rate. The stress exponent in the power law rate equation is estimated to be in the range 7.0–4.0, decreasing with temperature. The activation energy for plastic flow in the range 1073–1373 K varies from 430 kJ mol−1 at low stresses to 340 kJ mol−1 at high stresses. However, it is fairly independent of strain rate and strain. The activation area has similarly shown a stress dependence and lies in the range 160–45b2. At 1423 K and at strain rates lower than 0.1 s−1 a strain rate sensitivity of 0.3 is observed with an associated activation energy of 375 kJ mol−1. The plastic flow in the entire range of temperature and strain rate investigated appears to be controlled by a diffusion mechanism. The results have revealed that it is possible to process the alloy by superplastic forming in the range 1373–1423 K at strain rates lower than 0.1 s−1.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effects of strain rate (10(-4)-10(-2) s(-1)) on tensile and compressive strength of the Al-Si alloy and Al-Si/graphite composite are investigated. The strain hardening exponent value of the composite was more than that of the alloy for all strain rates during tensile and compressive loading. The yield stress of the composite was more than that of the ultimate tensile strength of the alloy for all strain rates. Tensile and compressive properties of the alloy and composite are dependent on strain rates. The negative strain rate sensitivity was observed for the composite and alloy at lower strain rates during the compression and tension loading respectively. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.