6 resultados para Randwertproblem
Resumo:
Magdeburg, Univ., Fak. für Mathematik, kumulative Habil.-Schr., 2011
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.
Resumo:
Das von Maz'ya eingeführte Approximationsverfahren, die Methode der näherungsweisen Näherungen (Approximate Approximations), kann auch zur numerischen Lösung von Randintegralgleichungen verwendet werden (Randpunktmethode). In diesem Fall hängen die Komponenten der Matrix des resultierenden Gleichungssystems zur Berechnung der Näherung für die Dichte nur von der Position der Randpunkte und der Richtung der äußeren Einheitsnormalen in diesen Punkten ab. Dieses numerisches Verfahren wird am Beispiel des Dirichlet Problems für die Laplace Gleichung und die Stokes Gleichungen in einem beschränkten zweidimensionalem Gebiet untersucht. Die Randpunktmethode umfasst drei Schritte: Im ersten Schritt wird die unbekannte Dichte durch eine Linearkombination von radialen, exponentiell abklingenden Basisfunktionen approximiert. Im zweiten Schritt wird die Integration über den Rand durch die Integration über die Tangenten in Randpunkten ersetzt. Für die auftretende Näherungspotentiale können sogar analytische Ausdrücke gewonnen werden. Im dritten Schritt wird das lineare Gleichungssystem gelöst, und eine Näherung für die unbekannte Dichte und damit auch für die Lösung der Randwertaufgabe konstruiert. Die Konvergenz dieses Verfahrens wird für glatte konvexe Gebiete nachgewiesen.
Resumo:
In der vorliegenden Arbeit werden zwei physikalischeFließexperimente an Vliesstoffen untersucht, die dazu dienensollen, unbekannte hydraulische Parameter des Materials, wiez. B. die Diffusivitäts- oder Leitfähigkeitsfunktion, ausMeßdaten zu identifizieren. Die physikalische undmathematische Modellierung dieser Experimente führt auf einCauchy-Dirichlet-Problem mit freiem Rand für die degeneriertparabolische Richardsgleichung in derSättigungsformulierung, das sogenannte direkte Problem. Ausder Kenntnis des freien Randes dieses Problems soll dernichtlineare Diffusivitätskoeffizient derDifferentialgleichung rekonstruiert werden. Für diesesinverse Problem stellen wir einOutput-Least-Squares-Funktional auf und verwenden zu dessenMinimierung iterative Regularisierungsverfahren wie dasLevenberg-Marquardt-Verfahren und die IRGN-Methode basierendauf einer Parametrisierung des Koeffizientenraumes durchquadratische B-Splines. Für das direkte Problem beweisen wirunter anderem Existenz und Eindeutigkeit der Lösung desCauchy-Dirichlet-Problems sowie die Existenz des freienRandes. Anschließend führen wir formal die Ableitung desfreien Randes nach dem Koeffizienten, die wir für dasnumerische Rekonstruktionsverfahren benötigen, auf einlinear degeneriert parabolisches Randwertproblem zurück.Wir erläutern die numerische Umsetzung und Implementierungunseres Rekonstruktionsverfahrens und stellen abschließendRekonstruktionsergebnisse bezüglich synthetischer Daten vor.