991 resultados para Random generation
Resumo:
Bibliography: p. 67.
Resumo:
Using the network random generation models from Gustedt (2009)[23], we simulate and analyze several characteristics (such as the number of components, the degree distribution and the clustering coefficient) of the generated networks. This is done for a variety of distributions (fixed value, Bernoulli, Poisson, binomial) that are used to control the parameters of the generation process. These parameters are in particular the size of newly appearing sets of objects, the number of contexts in which new elements appear initially, the number of objects that are shared with `parent` contexts, and, the time period inside which a context may serve as a parent context (aging). The results show that these models allow to fine-tune the generation process such that the graphs adopt properties as can be found in real world graphs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
The characteristics of the power-line communication (PLC) channel are difficult to model due to the heterogeneity of the networks and the lack of common wiring practices. To obtain the full variability of the PLC channel, random channel generators are of great importance for the design and testing of communication algorithms. In this respect, we propose a random channel generator that is based on the top-down approach. Basically, we describe the multipath propagation and the coupling effects with an analytical model. We introduce the variability into a restricted set of parameters and, finally, we fit the model to a set of measured channels. The proposed model enables a closed-form description of both the mean path-loss profile and the statistical correlation function of the channel frequency response. As an example of application, we apply the procedure to a set of in-home measured channels in the band 2-100 MHz whose statistics are available in the literature. The measured channels are divided into nine classes according to their channel capacity. We provide the parameters for the random generation of channels for all nine classes, and we show that the results are consistent with the experimental ones. Finally, we merge the classes to capture the entire heterogeneity of in-home PLC channels. In detail, we introduce the class occurrence probability, and we present a random channel generator that targets the ensemble of all nine classes. The statistics of the composite set of channels are also studied, and they are compared to the results of experimental measurement campaigns in the literature.
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
La malhonnêteté académique au cours d’épreuves présente des enjeux importants quant à l’intégrité des évaluations. La présence des TIC étant de plus en plus importante en cours de passation dans les épreuves, il est important avec ce mode de récolte de données d’assurer un niveau de sécurité égal ou même supérieur à celui présent lorsqu’un mode de récolte de données traditionnel, le papier-crayon, est utilisé. Il existe plusieurs recherches sur l’utilisation des TIC dans l’évaluation, mais peu d’entre elles traitent des modalités de sécurité lors de l’utilisation des TIC. Dans ce mémoire, treize organisations québécoises ont été rencontrées: six qui utilisaient les TIC dans la passation, cinq qui utilisaient le papier-crayon dans la passation mais qui désiraient utiliser les TIC et deux qui utilisaient le papier-crayon et qui ne désiraient pas utiliser les TIC. Les organisations sont des établissements d’enseignement (primaire, secondaire, collégial, universitaire), des entreprises privées, des organismes gouvernementaux ou municipaux et des ordres professionnels. Des entrevues semi-structurées et une analyse qualitative par présence ou absence de différentes caractéristiques ont permis de documenter les modalités de sécurité liées à la récolte de données en vue de l’évaluation en utilisant les TIC. Ces modalités ont été comparées à celles utilisées lors de l’utilisation du papier-crayon dans la récolte de données en vue de l’évaluation afin de voir comment elles varient lors de l’utilisation des TIC. Les résultats révèlent que l’utilisation des TIC dans la passation complexifie et ajoute des étapes à la préparation des épreuves pour assurer un niveau de sécurité adéquat. Cependant elle permet également de nouvelles fonctions en ce qui concerne le type de questions, l’intégration de multimédia, l’utilisation de questions adaptatives et la génération aléatoire de l’épreuve qui permettent de contrer certaines formes de malhonnêteté académiques déjà présentes avec l’utilisation du papier-crayon dans la passation et pour lesquelles il était difficile d’agir. Toutefois, l’utilisation des TIC dans la passation peut aussi amener de nouvelles possibilités de malhonnêteté académique. Mais si ces dernières sont bien prises en considération, l’utilisation des TIC permet un niveau de sécurité des épreuves supérieur à celui où les données sont récoltées au traditionnel papier-crayon en vue de l’évaluation.
Resumo:
To plan testing activities, testers face the challenge of determining a strategy, including a test coverage criterion that offers an acceptable compromise between the available resources and test goals. Known theoretical properties of coverage criteria do not always help and, thus, empirical data are needed. The results of an experimental evaluation of several coverage criteria for finite state machines (FSMs) are presented, namely, state and transition coverage; initialisation fault and transition fault coverage. The first two criteria focus on FSM structure, whereas the other two on potential faults in FSM implementations. The authors elaborate a comparison approach that includes random generation of FSM, construction of an adequate test suite and test minimisation for each criterion to ensure that tests are obtained in a uniform way. The last step uses an improved greedy algorithm.
Resumo:
Crowd induced dynamic loading in large structures, such as gymnasiums or stadium, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lag among individuals inside the crowd. This paper presents the testing done on a structure designed to be a gymnasium. Two series of dynamic test were performed on the gym slab. For the first test an electrodynamic shaker was placed at several locations and during the second one people located inside a marked area bounced and jumped guided by different metronome rates. A finite element model (FEM) is presented and a comparison of numerically predicted and experimentally observed vibration modes and frequencies has been used to assess its validity. The second group of measurements will be compared with predictions made using the FEM model and three alternatives for crowd induced load modelling.
Resumo:
Crowd induced dynamic loading in large structures, such as gymnasiums or stadiums, is usually modelled as a series of harmonic loads which are defined in terms of their Fourier coefficients. Different values of these Fourier coefficients that were obtained from full scale measurements can be found in codes. Recently, an alternative has been proposed, based on random generation of load time histories that take into account phase lags among individuals inside the crowd. Generally the testing is performed on platforms or structures that can be considered rigid because their natural frequencies are higher than the excitation frequencies associated with crowd loading. In this paper we shall present the testing done on a structure designed to be a gymnasium, which has natural frequencies within that range. In this test the gym slab was instrumented with acceleration sensors and different people jumped on a force plate installed on the floor. Test results have been compared with predictions based on the two abovementioned load modelling alternatives and a new methodology for modelling jumping loads has been proposed in order to reduce the difference between experimental and numerical results at high frequency range.
Resumo:
Esta investigación es un ejemplo de simbiosis entre criptoanálisis y desciframiento de lenguas. Es la búsqueda del sentido de una inscripción, un conjunto de casi doscientas letras latinas, en una talla de la Virgen María que estaba en la isla de Tenerife, en la localidad hoy de Candelaria, en las islas Canarias. La imagen desapareció en un temporal en el año 1826. No obstante, es posible lograr una gran certeza sobre qué letras tenía, acudiendo a las fuentes documentales textuales y artísticas. El conocimiento del significado, si lo hubiera, de la inscripción mariana, creemos que no puede lograrse sin la adecuada comprensión del contexto. Esto significa indagar en la historia de la misma talla, que se remonta hasta el siglo XIV o XV, en el estudio de la población autóctona canaria, así como de los pueblos que allí llegaron en sus diferentes momentos históricos. Además, es necesario conocer el redescubrimiento del archipiélago canario y sus procesos de conquista y evangelización. Todos estos datos irán ofreciendo un panorama nuevo y sorprendente para comprender no sólo las letras sino la misma imagen escultórica en madera. A partir de este momento la indagación se moverá en ver si las letras corresponden a alguna lengua posible, lo que nos ha llevado a analizar un amplísimo conjunto de textos lo más cercanos a la época bajo estudio, pertenecientes a alrededor de un centenar de lenguas. Tras el examen lingüístico se ha procedido a un estudio de las posibles formas criptográficas que se hubieran utilizado para generar el texto de la inscripción. Se ofrece un detallado y minucioso elenco de técnicas posibles que pudieran haberse adoptado y se criptoanaliza con exhaustividad las letras de la talla mariana. Al mismo tiempo se ofrece un nuevo marco criptológico de métodos y sistemas más ordenado y completo que el que hasta ahora venía considerándose, en especial desde el surgimiento de la criptografía de clave asimétrica. Continuamos la investigación sopesando la posible generación pseudo-aleatoria del texto, un texto que pudiera no tener sentido alguno. En este momento, y habiendo completado todas las posibilidades e hipótesis, habiéndose negado todas, volvemos a reconsiderar el cuerpo de conjeturas y supuestos. Desde ahí analizamos en profundidad el ámbito etnográfico y lingüístico bereber como hipótesis más plausible y probable. Tras la profundización en esta lengua y la corrección de los errores que nos llevaron a no detectarla en nuestro análisis precedente, llegamos a la conclusión de encontrarnos ante una lengua arcaica bereber, un conjunto de letras pertenecientes a una lengua y familia hoy no desaparecida, si bien muy modelada y difuminada por otras lenguas, en especial el árabe. Esto nos llevará a rescatar aspectos léxicos, morfológicos, sintácticos y fonéticos de este habla arcaica. Con todos estos datos realizamos un amplio estudio semántico de la talla tanto desde la perspectiva aborigen autóctona como cristiana. Finalmente, desde las voces lexicales y sus raíces de las lenguas bereberes e insulares amazigh, ofrecemos el significado de las letras inscritas en la talla mariana de Candelaria. ABSTRACT This research is an example of symbiosis between cryptanalysis and deciphering of languages. It is the search for meaning in an inscription, a group of about two hundred latin letters on a carving of the Virgin Mary that was on the island of Tenerife, in the town of Candelaria today, in the Canary islands. The image disappeared in a storm in 1826. However, it is possible to achieve a great certainty about what letters had, going to the textual and artistic documentary sources. The knowledge of the meaning, if any, of the marian inscription, can not be achieved without an adequate knowledge of the context. This means researching into the history of the same carving, which dates back to the fourteenth and fifteen century; the study of the canarian indigenous people and of the people who came there at different historical moments. Furthermore, it is necessary to know the rediscovery of the Canary islands and their processes of conquest and evangelization. All these data will offer a new and surprising outlook to understanding not only the letters but the same wood sculpture. From this moment the inquiry will move to see if the letters correspond to any possible language, which has led us to analyze a very large set of texts as close to the time under study, in a hundred languages. After the language examination, has been carried out a study of possible cryptographic forms used to generate the text of the inscription. A detailed and thorough list of possible techniques that could be adopted is offered. Then exhaustively we cryptanalyze the letters of the marian carving. At the same time a new crypto framework of methods and systems more orderly and complete, especially since the emergence of asymmetric key cryptography, is provided. We continue researching the possible pseudo-random generation of the text, a text that would not make any sense. At this time, and having completed all the possibilities and hypotheses, all having refused, we return to rethink our assumptions. From there we analyze in depth the ethnographic and linguistic berber sphere as the most likely hypothesis. Following the deepening of this language and correcting the mistakes that led us not to detect it in our analysis above, we conclude that this is an archaic berber language, a set of letters belonging to a language and family not extinct today but very modeled and influenced by other languages, primarily arabic. This will lead us to rescue lexical, morphological, syntactic and phonetic aspects of this archaic speech. With all this data we make a wide semantic study of the carving from the indigenous and christian perspective. Finally, from the lexical voices and roots of the berber languages amazigh and island-amazigh, we give the meaning of the letters inscribed in the marian carving of Candelaria.
Resumo:
Uncorrelated random scale-free networks are useful null models to check the accuracy and the analytical solutions of dynamical processes defined on complex networks. We propose and analyze a model capable of generating random uncorrelated scale-free networks with no multiple and self-connections. The model is based on the classical configuration model, with an additional restriction on the maximum possible degree of the vertices. We check numerically that the proposed model indeed generates scale-free networks with no two- and three-vertex correlations, as measured by the average degree of the nearest neighbors and the clustering coefficient of the vertices of degree k, respectively.
Resumo:
Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals' explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants' explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people's interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.
Resumo:
A parallel hardware random number generator for use with a VLSI genetic algorithm processing device is proposed. The design uses an systolic array of mixed congruential random number generators. The generators are constantly reseeded with the outputs of the proceeding generators to avoid significant biasing of the randomness of the array which would result in longer times for the algorithm to converge to a solution. 1 Introduction In recent years there has been a growing interest in developing hardware genetic algorithm devices [1, 2, 3]. A genetic algorithm (GA) is a stochastic search and optimization technique which attempts to capture the power of natural selection by evolving a population of candidate solutions by a process of selection and reproduction [4]. In keeping with the evolutionary analogy, the solutions are called chromosomes with each chromosome containing a number of genes. Chromosomes are commonly simple binary strings, the bits being the genes.
Resumo:
Random number generation (RNG) is a functionally complex process that is highly controlled and therefore dependent on Baddeley's central executive. This study addresses this issue by investigating whether key predictions from this framework are compatible with empirical data. In Experiment 1, the effect of increasing task demands by increasing the rate of the paced generation was comprehensively examined. As expected, faster rates affected performance negatively because central resources were increasingly depleted. Next, the effects of participants' exposure were manipulated in Experiment 2 by providing increasing amounts of practice on the task. There was no improvement over 10 practice trials, suggesting that the high level of strategic control required by the task was constant and not amenable to any automatization gain with repeated exposure. Together, the results demonstrate that RNG performance is a highly controlled and demanding process sensitive to additional demands on central resources (Experiment 1) and is unaffected by repeated performance or practice (Experiment 2). These features render the easily administered RNG task an ideal and robust index of executive function that is highly suitable for repeated clinical use.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.