Probabilistic approaches in civil engineering: generation of random fields and structural identification with genetic algorithms


Autoria(s): Bocchini, Paolo
Contribuinte(s)

Viola, Erasmo

Data(s)

21/05/2008

Resumo

The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/960/1/Tesi_Bocchini_Paolo.pdf

urn:nbn:it:unibo-929

Bocchini, Paolo (2008) Probabilistic approaches in civil engineering: generation of random fields and structural identification with genetic algorithms, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Meccanica delle strutture <http://amsdottorato.unibo.it/view/dottorati/DOT272/>, 20 Ciclo. DOI 10.6092/unibo/amsdottorato/960.

Idioma(s)

en

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/960/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #ICAR/08 Scienza delle costruzioni
Tipo

Tesi di dottorato

NonPeerReviewed