961 resultados para Random coefficient logit models
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2015
Resumo:
Random coefficient regression models have been applied in differentfields and they constitute a unifying setup for many statisticalproblems. The nonparametric study of this model started with Beranand Hall (1992) and it has become a fruitful framework. In thispaper we propose and study statistics for testing a basic hypothesisconcerning this model: the constancy of coefficients. The asymptoticbehavior of the statistics is investigated and bootstrapapproximations are used in order to determine the critical values ofthe test statistics. A simulation study illustrates the performanceof the proposals.
Resumo:
La literatura de elección de destinos turísticos ha dedicado una gran atención al impacto directo del atributo “precio del destino”, pero no ha alcanzado un consenso en torno al mismo. Alternativamente, nuestro trabajo toma como punto de partida la relación entre las motivaciones turísticas y los beneficios buscados del turista en un destino, lo que lleva a proponer que el efecto del precio viene moderado por las motivaciones del turista a la hora de elegir un destino. Para ello, se argumentan diversas hipótesis de investigación que explican esta decisión a través de la interacción entre dicho atributo del destino y las motivaciones personales de los individuos. La metodología aplicada estima Modelos Logit con Coeficientes Aleatorios que permiten controlar posibles correlaciones entre los distintos destinos y recoger la heterogeneidad de los turistas. La aplicación empírica realizada en España sobre una muestra de 2.127 individuos evidencia que las motivaciones moderan el efecto de los precios en la elección de los destinos turísticos intrapaís.
Resumo:
Comunicación presentada en CIDUI 2010, Congreso Internacional Docencia Universitaria e Innovación, Barcelona, 30 junio-2 julio 2010.
Resumo:
Estimation of demand and supply in differentiated products markets is a central issue in Empirical Industrial Organization and has been used to study the effects of taxes, merges, introduction of new goods, market power, among others. Logit and Random Coefficients Logit are examples of demand models used to study these effects. For the supply side it is generally supposed a Nash equilibrium in prices. This work presents a detailed discussion of these models of demand and supply as well as the procedure for estimation. Lastly, is made an application to the Brazilian fixed income fund market.
Resumo:
2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.
Resumo:
In the 'rice-wheat' and the 'cotton-wheat' farming systems of Pakistan's Punjab, late planting of wheat is a perennial problem due to often delayed harvesting of the previously planted and late maturing rice and cotton crops. This leaves very limited time for land preparation for 'on-time' planting of wheat. 'No-tillage' technologies that reduce the turn-round time for wheat cultivation after rice and cotton have been developed, but their uptake has not been as expected.-This paper attempts to determine the farm and farmer characteristics and other socio-economic factors that influence the adoption of 'no-tillage' technologies'. Logit models were developed for the analysis undertaken. In the 'cotton-wheat' system personal characteristics like education, tenancy status, attitude towards risk implied in the use of new technologies and contact with extension agents are the main factors that affect adoption. As regards the 'rice-wheat' system, resource endowments such as farm size, access to a 'no-tillage' drill, clayey soils and the area sown to the rice-wheat sequence along with tenancy and contact with extension agents were dominant in explaining adoption. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Random Forests™ is reported to be one of the most accurate classification algorithms in complex data analysis. It shows excellent performance even when most predictors are noisy and the number of variables is much larger than the number of observations. In this thesis Random Forests was applied to a large-scale lung cancer case-control study. A novel way of automatically selecting prognostic factors was proposed. Also, synthetic positive control was used to validate Random Forests method. Throughout this study we showed that Random Forests can deal with large number of weak input variables without overfitting. It can account for non-additive interactions between these input variables. Random Forests can also be used for variable selection without being adversely affected by collinearities. ^ Random Forests can deal with the large-scale data sets without rigorous data preprocessing. It has robust variable importance ranking measure. Proposed is a novel variable selection method in context of Random Forests that uses the data noise level as the cut-off value to determine the subset of the important predictors. This new approach enhanced the ability of the Random Forests algorithm to automatically identify important predictors for complex data. The cut-off value can also be adjusted based on the results of the synthetic positive control experiments. ^ When the data set had high variables to observations ratio, Random Forests complemented the established logistic regression. This study suggested that Random Forests is recommended for such high dimensionality data. One can use Random Forests to select the important variables and then use logistic regression or Random Forests itself to estimate the effect size of the predictors and to classify new observations. ^ We also found that the mean decrease of accuracy is a more reliable variable ranking measurement than mean decrease of Gini. ^
Resumo:
Health departments, research institutions, policy-makers, and healthcare providers are often interested in knowing the health status of their clients/constituents. Without the resources, financially or administratively, to go out into the community and conduct health assessments directly, these entities frequently rely on data from population-based surveys to supply the information they need. Unfortunately, these surveys are ill-equipped for the job due to sample size and privacy concerns. Small area estimation (SAE) techniques have excellent potential in such circumstances, but have been underutilized in public health due to lack of awareness and confidence in applying its methods. The goal of this research is to make model-based SAE accessible to a broad readership using clear, example-based learning. Specifically, we applied the principles of multilevel, unit-level SAE to describe the geographic distribution of HPV vaccine coverage among females aged 11-26 in Texas.^ Multilevel (3 level: individual, county, public health region) random-intercept logit models of HPV vaccination (receipt of ≥ 1 dose Gardasil® ) were fit to data from the 2008 Behavioral Risk Factor Surveillance System (outcome and level 1 covariates) and a number of secondary sources (group-level covariates). Sampling weights were scaled (level 1) or constructed (levels 2 & 3), and incorporated at every level. Using the regression coefficients (and standard errors) from the final models, I simulated 10,000 datasets for each regression coefficient from the normal distribution and applied them to the logit model to estimate HPV vaccine coverage in each county and respective demographic subgroup. For simplicity, I only provide coverage estimates (and 95% confidence intervals) for counties.^ County-level coverage among females aged 11-17 varied from 6.8-29.0%. For females aged 18-26, coverage varied from 1.9%-23.8%. Aggregated to the state level, these values translate to indirect state estimates of 15.5% and 11.4%, respectively; both of which fall within the confidence intervals for the direct estimates of HPV vaccine coverage in Texas (Females 11-17: 17.7%, 95% CI: 13.6, 21.9; Females 18-26: 12.0%, 95% CI: 6.2, 17.7).^ Small area estimation has great potential for informing policy, program development and evaluation, and the provision of health services. Harnessing the flexibility of multilevel, unit-level SAE to estimate HPV vaccine coverage among females aged 11-26 in Texas counties, I have provided (1) practical guidance on how to conceptualize and conduct modelbased SAE, (2) a robust framework that can be applied to other health outcomes or geographic levels of aggregation, and (3) HPV vaccine coverage data that may inform the development of health education programs, the provision of health services, the planning of additional research studies, and the creation of local health policies.^
Resumo:
Many destination marketing organizations in the United States and elsewhere are facing budget retrenchment for tourism marketing, especially for advertising. This study evaluates a three-stage model using Random Coefficient Logit (RCL) approach which controls for correlations between different non-independent alternatives and considers heterogeneity within individual’s responses to advertising. The results of this study indicate that the proposed RCL model results in a significantly better fit as compared to traditional logit models, and indicates that tourism advertising significantly influences tourist decisions with several variables (age, income, distance and Internet access) moderating these decisions differently depending on decision stage and product type. These findings suggest that this approach provides a better foundation for assessing, and in turn, designing more effective advertising campaigns.
Resumo:
The analysis of tourist destination choice, defined by intra-country administrative units and by product types “coastal/inland and village/city”, permits the characterisation of tourist flow behaviour, which is fundamental for public planning and business management. In this study, we analyse the determinant factors of tourist destination choice, proposing various research hypotheses relative to the impact of destination attributes and the personal characteristics of tourists. The methodology applied estimates Nested and Random Coefficients Multinomial Logit Models, which allow control over possible correlations among different destinations. The empirical application is realised in Spain on a sample of 3,781 individuals and allows us to conclude that prices, distance to the destination and personal motivations are determinants in destination choice.
Resumo:
In a context of intense competition, cooperative advertising between firms is critical. Accordingly, the objective of this article is to analyze the potential differentiated effect of advertising on two basic consumption patterns: individual products (i.e. hotel, restaurant) vs. bundle (i.e. hotel + restaurant). This research adds to the extant literature in that, for the first time, this potential differentiated effect is examined through a hierarchical modelling framework that reflects the way people make their decisions: first, they decide whether to visit or not a region; second, whether to purchase an advertised product in that region; and third, whether to buy products together or separately at the region. The empirical analysis, applied to a sample of 11,288 individuals, shows that the influence of advertising is positive for the decisions to visit and to purchase; however, when it comes to the joint or separate consumption, advertising has a differentiated effect: its impact is much greater on the joint alternative (“hotel + restaurant”) than the separate options (“hotel” and “restaurant”). Also, the variable distance moderates the advertising effect.