995 resultados para Random close packing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’impacchettamento risulta essere importante in molti settori industriali, come il settore minerario, farmaceutico e soprattutto il settore spaziale, in quanto permette di massimizzare il grado di riempimento del propellente solido di un razzo ottenendo prestazioni migliori e notevoli vantaggi economici. Il lavoro di tesi presentato nel seguente elaborato consiste nello studio dell’impacchettamento casuale, in particolare il caso Random Close Packing, di un propellente solido; per fare ciò è stato implementato un codice in ambiente C++ presso l’hangar della Scuola di Ingegneria ed Architettura con sede a Forlì. L’obiettivo principale era quello di trovare la granulometria delle particelle di perclorato di ammonio e delle particelle di alluminio tali da minimizzare gli spazi lasciati vuoti dalle particelle stesse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'obiettivo di questo lavoro di tesi è quello di implementare un codice di calcolo, attraverso l'algoritmo di Lubachevsky-Stillinger, in modo da poter prevedere la frazione volumetrica occupata dalle particelle solide che costituiscono il grain negli endoreattori a propellente solido. Particolare attenzione verrà rivolta al problema dell'impacchettamento sferico random (Random-Close Packing) che tale algoritmo cerca di modellare, e le ipotesi per cui tale modellazione può essere applicata al tipo di problema proposto. Inoltre saranno descritte le procedure effettuate per l'ottenimento dei risultati numerici delle simulazioni e la loro motivazione, oltre ai limiti del modello utilizzato e alle migliorie apportate per un'esecuzione più efficiente e veloce.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most simulations of random sphere packing concern a cubic or cylindric container with periodic boundary, containers of other shapes are rarely studied. In this paper, a new relaxation algorithm with pre-expanding procedure for random sphere packing in an arbitrarily shaped container is presented. Boundaries of the container are simulated by overlapping spheres which covers the boundary surface of the container. We find 0.4 similar to 0.6 of the overlap rate is a proper value for boundary spheres. The algorithm begins with a random distribution of small internal spheres. Then the expansion and relaxation procedures are performed alternately to increase the packing density. The pre-expanding procedure stops when the packing density of internal spheres reaches a preset value. Following the pre-expanding procedure, the relaxation and shrinking iterations are carried out alternately to reduce the overlaps of internal spheres. The pre-expanding procedure avoids the overflow problem and gives a uniform distribution of initial spheres. Efficiency of the algorithm is increased with the cubic cell background system and double link data structure. Examples show the packing results agree well with both computational and experimental results. Packing density about 0.63 is obtained by the algorithm for random sphere packing in containers of various shapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses have been prepared by conventional quenching techniques in the ternary sulphate system KzSO4-Na2SO4-ZnSO4, in the range 30-80 % ZnS04. The proportions of alkali sulphates in the glass have been varied widely. The glass formation region has been delineated and densities, refractive indices and microhardnesses have been measured. The heat capacities of the glasses have been measured over a wide range of temperature by differential scanning calorimetry. The effect of composition on molar volume, molar polarization and glass transition have been explained on the basis of a random close-packing model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear flows of inelastic spheres in three dimensions in the Volume fraction range 0.4-0.64 are analysed using event-driven simulations.Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution e(n) (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution e(t) (negative of the ratio of post- and pre-collisional velocities perpendicular to the line Joining the centres). Here, we have considered both e(t) = +1 and e(t) = e(n) (rough particles) and e(t) =-1 (smooth particles), and the normal coefficient of restitution e(n) was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q(6) in three dimensions and the planar order parameter q(6) in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system Continues to be in the random state, with Q(6) and q(6) close to 0, even for volume fractions between phi = 0.5 and phi = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at phi = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of estitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction phi(ad) (volume fraction for arrested dynamics) which is lower than the random close-packing Volume fraction 0.64 in the absence of shear. The volume fraction phi(ad) decreases as the coefficient of restitution is decreased from e(n) = 1; phi(ad) has a minimum of about 0.585 for coefficient of restitution e(n) in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well Captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used In the theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses in a wide range of compositions in the ternary system xLi(2)SO(4-y)Li(2)O-zP(2)O(5) where x ranges from 0 to 30 mol%, y ranges from 35 to 55 mol% and z ranges from 25 to 50 mol% have been prepared and their properties measured using infra-red, Raman, and P-31 magic angle spinning nuclear magnetic resonance spectroscopic techniques. We conclude that a random close packing of phosphate and sulphate ions which also leads to formation of connected voids in the structure is consistent with our data. There is also evidence for formation of condensed sulphate-phosphate species in the liquid which may be retained in the glass structure. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the influence of composition changes on the glass transition behavior of binary liquids in two and three spatial dimensions (2D/3D) is studied in the framework of mode-coupling theory (MCT).The well-established MCT equations are generalized to isotropic and homogeneous multicomponent liquids in arbitrary spatial dimensions. Furthermore, a new method is introduced which allows a fast and precise determination of special properties of glass transition lines. The new equations are then applied to the following model systems: binary mixtures of hard disks/spheres in 2D/3D, binary mixtures of dipolar point particles in 2D, and binary mixtures of dipolar hard disks in 2D. Some general features of the glass transition lines are also discussed. The direct comparison of the binary hard disk/sphere models in 2D/3D shows similar qualitative behavior. Particularly, for binary mixtures of hard disks in 2D the same four so-called mixing effects are identified as have been found before by Götze and Voigtmann for binary hard spheres in 3D [Phys. Rev. E 67, 021502 (2003)]. For instance, depending on the size disparity, adding a second component to a one-component liquid may lead to a stabilization of either the liquid or the glassy state. The MCT results for the 2D system are on a qualitative level in agreement with available computer simulation data. Furthermore, the glass transition diagram found for binary hard disks in 2D strongly resembles the corresponding random close packing diagram. Concerning dipolar systems, it is demonstrated that the experimental system of König et al. [Eur. Phys. J. E 18, 287 (2005)] is well described by binary point dipoles in 2D through a comparison between the experimental partial structure factors and those from computer simulations. For such mixtures of point particles it is demonstrated that MCT predicts always a plasticization effect, i.e. a stabilization of the liquid state due to mixing, in contrast to binary hard disks in 2D or binary hard spheres in 3D. It is demonstrated that the predicted plasticization effect is in qualitative agreement with experimental results. Finally, a glass transition diagram for binary mixtures of dipolar hard disks in 2D is calculated. These results demonstrate that at higher packing fractions there is a competition between the mixing effects occurring for binary hard disks in 2D and those for binary point dipoles in 2D.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Various packed beds of copper-based oxygen carriers (CuO on Al2O3) were tested over 100 cycles of low temperature (673K) Chemical Looping Combustion (CLC) with H2 as the fuel gas. The oxygen carriers were uniformly mixed with alumina (Al2O3) in order to investigate the level of separation necessary to prevent agglomeration. It was found that a mass ratio of 1:6 oxygen carrier to alumina gave the best performance in terms of stable, repeating hydrogen breakthrough curves over 100 cycles. In order to quantify the average separation achieved in the mixed packed beds, two sphere-packing models were developed. The hexagonal close-packing model assumed a uniform spherical packing structure, and based the separation calculations on a hypergeometric probability distribution. The more computationally intensive full-scale model used discrete element modelling to simulate random packing arrangements governed by gravity and contact dynamics. Both models predicted that average 'nearest neighbour' particle separation drops to near zero for oxygen carrier mass fractions of x≥0.25. For the packed bed systems studied, agglomeration was observed when the mass fraction of oxygen carrier was above this threshold. © 2013 Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the assembly of a three-dimensional molecular crystal in terms of short-range supramolecular synthons that spontaneously organize themselves according to Aufbau principles into long-range geometries characteristic of the molecules themselves. For this purpose we have examined the systematic changes in the known crystal structures of a family of fluorobenzenes, C6H6-nFn, where 0 <= n <= 6. Crystal assembly is initiated by forming long-range synthon Aufbau modules (LSAM) that carry the imprint of the synthons. For example, when 1 <= n <= 5 the short-range synthons use H center dot center dot center dot F interactions to form the LSAMs. In the n = 0 and n = 6 compounds, the synthons are H center dot center dot center dot C and F center dot center dot center dot C interactions, respectively. The LSAMs are usually one-dimensional. In this study we show that these 1D LSAMs assemble into 2D quasi-hexagonal close-packed layers. The 3D crystal structure is obtained from the various kinds of close-packing known for these 2D layers. The final stages of this 1D -> 2D -> 3D assembly seem to be more influenced by the packing of LSAMs than by any other factor. In these final stages, there may not be so much influence exerted by the stronger short-range synthons. We discuss the evolution of these fluorobenzene crystal structures in terms of putative LSAMs and the purely geometric relationships between the n and (6 - n) compounds that can thus be expected. Such particle-hole pairs show structural similarities. Our discussion is quantified by the interpretation of intermolecular distances in terms of atomic sizes and with qualitative predictions of magnetic model systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

C~HaO 4, Mr=204.2, monoclinic, P2Jn,a=3.900(1), =37.530(6), c=6.460(1)A, fl=103.7 (1) °, V= 918.5 (5) A 3, Z = 4, D m = 1.443, D x --- 1.476 Mg m -3, Cu Ks, 2 = 1.5418 ,/k, /t = 0.86 mm -~, F(000) = 424, T= 293 K, R = 0.075 for 1019 significant reflections. Molecules pack in fl-type stacking mode which is characterized by the close packing of parallel and nearly planar reactive double bonds with a separation of 3.900/~ along the a axis.The syn head-head dimer obtained is the direct consequence of this packing arrangement. Molecular packing is stabilized by intermolecular C-H...O hydrogen bonding. Analysis of acetoxy...acetoxy interactions in the acetoxy compounds retrieved from the Cambridge Structural Database reveal that the majority of them are anti-dipolar.