909 resultados para Raman spectroscopy study


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended X-ray absorption fine spectroscopy (EXAFS) and Raman scattering studies of InF3-BaF2 and InF3-SrF2 binary glasses are reported. For all compositions, the local structure of the glasses is built with InF6 units. For all glasses studied, the indium neighbour's number and the In-F mean bond length are equal to the values of the InF3 crystalline phase (6 and 0.205 nm, respectively). © 1996 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a Raman study of PbZr1-xTi xO3 ceramics with composition values close to the morphotropic phase boundary region. The analysis of the Raman spectra leads to the determination of the monoclinic phase extension at different temperatures in a very good agreement with those determined by diffraction techniques. Therefore the obtained results show that Raman spectroscopy is a powerful and suitable technique to study structural phase transitions in PbZr 1-xTixO3. © 2002 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a multi-wavelength Raman spectroscopy study of the structural changes along the thermal annealing pathway of a poly(furfuryl alcohol) (PFA) derived nanoporous carbon (NPC). The Raman spectra were deconvoluted utilizing G, D, D′, A and TPA bands. The appropriateness of these deconvolutions was confirmed via recovery of the correct dispersive behaviours of these bands. It is proposed that the ID/IG ratio is composed of two parts: one associated with the extent of graphitic crystallites (the Tuinstra–Koenig relationship), and a second related to the inter-defect distance. This model was used to successfully determine the variation of the in-plane size and intra-plane defect density along the annealing pathway. It is proposed that the NPC skeleton evolves along the annealing pathway in two stages: below 1600 °C it was dominated by a reduction of in-plane defects with a minor crystallite growth, and above this temperature growth of the crystallites accelerates as the in-plane defect density approaches zero. A significant amount of transpolyacetylene (TPA)-like structures was found to be remaining even at 2400 °C. These may be responsible for resistance to further graphitization of the PFA-based carbon at higher temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid-state transformation of carbamazepine from form III to form I was examined by Fourier Transform Raman spectroscopy. Using a novel environmental chamber, the isothermal conversion was monitored in situ at 130◦C, 138◦C, 140◦C and 150◦C. The rate of transformation was monitored by taking the relative intensities of peaks arising from two C H bending modes; this approach minimised errors due to thermal artefacts and variations in power intensities or scattering efficiencies from the samples in which crystal habit changed from a characteristic prism morphology (form III) to whiskers (form I). The solid-state transformation at the different temperatures was fitted to various solid-state kinetic models of which four gave good fits, thus indicating the complexity of the process which is known to occur via a solid–gas–solid mechanism. Arrhenius plots from the kinetic models yielded activation energies from 344 kJ mol−1 to 368 kJ mol−1 for the transformation. The study demonstrates the value of a rapid in situ analysis of drug polymorphic type which can be of value for at-line in-process control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: the aim of this study was to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA; similar to 960 cm(-1)), and scanning electron microscopy (SEM), the bone quality on the healing bone around dental implants after laser photobiomodulation ( lambda 830 nm). Background Data: Laser photobiomodulation has been successfully used to improve bone quality around dental implants, allowing early wearing of prostheses. Methods: Fourteen rabbits received a titanium implant on the tibia; eight of them were irradiated with lambda 830 nm laser ( seven sessions at 48-h intervals, 21.5 J/cm(2) per point, 10 mW, phi similar to 0.0028 cm(2), 86 J per session), and six acted as control. The animals were sacrificed 15, 30, and 45 days after surgery. Specimens were routinely prepared for Raman spectroscopy and SEM. Eight readings were taken on the bone around the implant. Results: the results showed significant differences on the concentration of CHA on irradiated and control specimens at both 30 and 45 days after surgery ( p < 0.001). Conclusion: It is concluded that infrared laser photobiomodulation does improve bone healing, and this may be safely assessed by Raman spectroscopy or SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)