989 resultados para Rabbit Retina


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synaptic conductance of the On-Off direction-selective ganglion cells was measured during visual stimulation to determine whether the direction selectivity is a property of the circuitry presynaptic to the ganglion cells or is generated by postsynaptic interaction of excitatory and inhibitory inputs. Three synaptic asymmetries were identified that contribute to the generation of direction-selective responses: (1) a presynaptic mechanism producing stronger excitation in the preferred direction, (2) a presynaptic mechanism producing stronger inhibition in the opposite direction, and (3) postsynaptic interaction of excitation with spatially offset inhibition. Although the on- and off-responses showed the same directional tuning, the off-response was generated by all three mechanisms, whereas the on- response was generated primarily by the two presynaptic mechanisms. The results indicate that, within a single neuron, different strategies are used within distinct dendritic arbors to accomplish the same neural computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the anatomical consequences of a photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Retinae were examined 2 weeks, 1, 3, and 6 months after systemic IAA injection. The retinae were processed using standard histological methods to assess the gross morphology and topographical distribution of damage, and by immunohistochemistry to examine specific cell populations in the retina. Degeneration was restricted to the photoreceptors and was most common in the ventral retina and visual streak. In damaged regions, the outer nuclear layer was reduced in thickness or eliminated entirely, with a concomitant loss of immunoreactivity for rhodopsin. However, the magnitude of the effect varied between animals with the same IAA dose and survival time, suggesting individual differences in the bioavailability of the toxin. In all eyes, the inner retina remained intact, as judged by the thickness of the inner nuclear layer, and by the pattern of immunoreactivity for protein kinase C-alpha (rod bipolar cells) and calbindin D-28 (horizontal cells). Müller cell stalks became immunoreactive for glial fibrillary acidic protein (GFAP) even in IAA-treated retinae that had no signs of cell loss, indicating a response of the retina to the toxin. However, no marked hypertrophy or proliferation of Müller cells was observed with either GFAP or vimentin immunohistochemistry. Thus the selective, long lasting damage to the photoreceptors produced by this toxin did not lead to a reorganization of the surviving cells, at least with survival as long as 6 months, in contrast to the remodeling of the inner retina that is observed in inherited retinal degenerations such as retinitis pigmentosa and retinal injuries such as retinal detachment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mammalian retina, AII amacrine cells are essential in the rod pathway for dark-adapted vision. But they also have a “day job”, to provide inhibitory inputs to certain OFF ganglion cells in photopic conditions. This is known as crossover inhibition. Physiological evidence from several different labs implies that AII amacrine cells provide direct input to certain OFF ganglion cells. However, previous EM analysis of the rabbit retina suggests that the dominant output of the AII amacrine cell in sublamina a goes to OFF cone bipolar cells (Strettoi et al., 1992). Two OFF ganglion cell types in the rabbit retina, OFF α and G9, were identified by a combination of morphological criteria such as dendritic field size, dye coupling, mosaic properties and stratification depth. The AII amacrine cells (AIIs) were labeled with an antibody against calretinin and glycine receptors were marked with an antibody against the α1 subunit. This material was analyzed by triple-label confocal microscopy. We found the lobules of AIIs made close contacts at many points along the dendrites of individual OFF α and G9 ganglion cells. At these potential synaptic sites, we also found punctate labeling for the glycine receptor α1 subunit. The presence of a post-synaptic marker such as the α1 glycine receptor at contact points between AII lobules and OFF ganglion cells supports a direct inhibitory input from AIIs. This pathway provides for crossover inhibition in the rabbit retina whereby light onset provides an inhibitory signal to OFF α and G9 ganglion cells. Thus, these two OFF ganglion cell types receive a mixed excitatory and inhibitory drive in response to light stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between cholinergic sensitivity and the level of stratification for ganglion cells was examined in the rabbit retina. As examples, we have used ON or OFF alpha ganglion cells and ON/OFF directionally selective (DS) ganglion cells. Nicotine, a cholinergic agonist, depolarized ON/OFF DS ganglion cells and greatly enhanced their firing rates but it had modest excitatory effects on ON or OFF alpha ganglion cells. As previously reported, we conclude that DS ganglion cells are the most sensitive to cholinergic drugs. Confocal imaging showed that ON/OFF DS ganglion cells ramify precisely at the level of the cholinergic amacrine cell dendrites, and co-fasciculate with the cholinergic matrix of starburst amacrine cells. However, neither ON or OFF alpha ganglion cells have more than a chance association with the cholinergic matrix. Z -axis reconstruction showed that OFF alpha ganglion cells stratify just below the cholinergic band in sublamina a while ON alpha ganglion cells stratify just below cholinergic b . The latter is at the same level as the terminals of calbindin bipolar cells. Thus, the calbindin bipolar cell appears to be a prime candidate to provide the bipolar cell input to ON alpha ganglion cells in the rabbit retina. We conclude that the precise level of stratification is correlated with the strength of cholinergic input. Alpha ganglion cells receive a weak cholinergic input and they are narrowly stratified just below the cholinergic bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many cell types in the retina are coupled via gap junctions and so there is a pressing need for a potent and reversible gap junction antagonist. We screened a series of potential gap junction antagonists by evaluating their effects on dye coupling in the network of A-type horizontal cells. We evaluated the following compounds: meclofenamic acid (MFA), mefloquine, 2-aminoethyldiphenyl borate (2-APB), 18-alpha-glycyrrhetinic acid, 18-beta-glycyrrhetinic acid (18-beta-GA), retinoic acid, flufenamic acid, niflumic acid, and carbenoxolone. The efficacy of each drug was determined by measuring the diffusion coefficient for Neurobiotin (Mills & Massey, 1998). MFA, 18-beta-GA, 2-APB and mefloquine were the most effective antagonists, completely eliminating A-type horizontal cell coupling at a concentration of 200 muM. Niflumic acid, flufenamic acid, and carbenoxolone were less potent. Additionally, carbenoxolone was difficult to wash out and also may be harmful, as the retina became opaque and swollen. MFA, 18-beta-GA, 2-APB and mefloquine also blocked coupling in B-type horizontal cells and AII amacrine cells. Because these cell types express different connexins, this suggests that the antagonists were relatively non-selective across several different types of gap junction. It should be emphasized that MFA was water-soluble and its effects on dye coupling were easily reversible. In contrast, the other gap junction antagonists, except carbenoxolone, required DMSO to make stock solutions and were difficult to wash out of the preparation at the doses required to block coupling in A-type HCs. The combination of potency, water solubility and reversibility suggest that MFA may be a useful compound to manipulate gap junction coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The task of encoding and processing complex sensory input requires many types of transsynaptic signals. This requirement is served in part by an extensive group of neurotransmitter substances which may include thirty or more different compounds. At the next level of information processing, the existence of multiple receptors for a given neurotransmitter appears to be a widely used mechanism to generate multiple responses to a given first messenger (Snyder and Goodman, 1980). Despite the wealth of published data on GABA receptors, the existence of more than one GABA receptor was in doubt until the mid 1980's. Presently there is still disagreement on the number of types of GABA receptors, estimates for which range from two to four (DeFeudis, 1983; Johnston, 1985). Part of the problem in evaluating data concerning multiple receptor types is the lack of information on the number of gene products and their subsequent supramolecular organization in different neurons. In order to evaluate the question concerning the diversity of GABA receptors in the nervous system, we must rely on indirect information derived from a wide variety of experimental techniques. These include pharmacological binding studies to membrane fractions, electrophysiological studies, localization studies, purification studies, and functional assays. Almost all parts of the central and peripheral nervous system use GABA as a neurotransmitter, and these experimental techniques have therefore been applied to many different parts of the nervous system for the analysis of GABA receptor characteristics. We are left with a large amount of data from a wide variety of techniques derived from many parts of the nervous system. When this project was initiated in 1983, there were only a handful of pharmacological tools to assess the question of multiple GABA receptors. The approach adopted was to focus on a single model system, using a variety of experimental techniques, in order to evaluate the existence of multiple forms of GABA receptors. Using the in vitro rabbit retina, a combination of pharmacological binding studies, functional release studies and partial purification studies were undertaken to examine the GABA receptor composition of this tissue. Three types of GABA receptors were observed: Al receptors coupled to benzodiazepine and barbiturate modulation, and A2 or uncoupled GABA-A receptors, and GABA-B receptors. These results are evaluated and discussed in light of recent findings by others concerning the number and subtypes of GABA receptors in the nervous system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cholinergic amacrine cells of the rabbit retinal are the only neurons which accumulate choline and also synthesize acetylcholine (ACh). It is widely accepted that the physiologically evoked release of acetylcholine can be taken as a measure of the activity of the entire cholinergic population. Initially, we examined the possibility that these cells receive excitatory input via glutamate receptors from glutamatergic neurons. Glutamate analogs were found to cause massive ACh release from the rabbit retina. Glutamate was found to activate several different receptor subtypes. Selective glutamate antagonists were used to separate the responses evoked by the different glutamate receptor subtypes. The kainate receptor was determined pharmacologically to be the subtype activated physiologically. Since bipolar cells make direct contact with cholinergic amacrine cells, our results support the hypothesis the bipolar cell neurotransmitter is glutamate. Although NMDA receptors can be activated by NMDA analogs, they are not activated during the physiologically evoked release of ACh. A separate study examined the possibility that L-homocysteate could be the bipolar cell neurotransmitter and the results placed serious constraints on this possibility.^ GABA$\sb{\rm A}$ agonists and antagonists are known to have powerful effects on ACh release from the rabbit retina. By pharmacologically blocking the excitatory input from bipolar cells, we attempted to determine the site of GABA$\sb{\rm A}$ input. Our results suggest that the predominant site of GABA$\sb{\rm A}$ input is onto the bipolar cells presynaptic to cholinergic amacrine cells. In a separate study, we found SR-95531 to be a potent and selective GABA$\sb{\rm A}$ receptor antagonist. In addition, GABA$\sb{\rm B}$ agonists and antagonists were found to have minor or no effects on ACh release. Glycine was also examined, its inhibitory effects were found to be very similar to GABA$\sb{\rm A}$ agonists. In contrast, strychnine was found to increase basal but inhibit light evoked ACh release. Additional results indicated that the predominant site of glycinergic input is onto the presynaptic bipolar cells. Our results suggest a different role for glycine compared to GABA in shaping the light evoked release of ACh from the rabbit retina. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate is the major excitatory neurotransmitter in the retina and serves as the synaptic messenger for the three classes of neurons which constitute the vertical pathway--the photoreceptors, bipolar cells and ganglion cells. In addition, the glutamate system has been localized morphologically, pharmacologically as well as molecularly during the first postnatal week of development before synaptogenesis occurs. The role which glutamate plays in the maturing visual system is complex but ranges from mediating developmental neurotoxicity to inducing neurite outgrowth.^ Nitric oxide/cGMP is a novel intercellular messenger which is thought to act in concert with the glutamate system in regulating a variety of cellular processes in the brain as well as retina, most notably neurotoxicity. Several developmental activities including programmed cell death, synapse elimination and synaptic reorganization are possible functions of cellular regulation modulated by nitric oxide as well as glutamate.^ The purpose of this thesis is to (1) biochemically characterize the endogenous pools of glutamate and determine what fraction exists extracellularly; (2) examine the morphological expression of NO producing cells in developing retina; (3) test the functional coupling of the NMDA subtype of glutamate receptor to the NO system by examining neurotoxicity which has roles in both the maturing and adult retina.^ Biochemical sampling of perfusates collected from the photoreceptor surface of ex vivo retina demonstrated that although the total pool of glutamate present at birth is relatively modest, a high percentage resides in extracellular pools. As a result, immature neurons without significant synaptic connections survive and develop in a highly glutamatergic environment which has been shown to be toxic in the adult retina.^ The interaction of the glutamate system with the NO system has been postulated to regulate neuronal survival. We therefore examined the developmental expression of the enzyme responsible for producing NO, nitric oxide synthase (NOS), using an antibody to the constitutive form of NOS found in the brain. The neurons thought to produce the majority of NO in the adult retina, a subpopulation of widefield amacrine cells, were not immunoreactive until the end of the second postnatal week. However, a unique developmental expression was observed in the ganglion cell layer and developing outer nuclear layer of the retina during the first postnatal week. We postulate NO producing neurons may not be present in a mature configuration therefore permitting neuronal survival in a highly glutamatergic microenvironment and allowing NO to play a development-specific role at this time.^ The next set of experiments constituted a functional test of the hypothesis that the absence of the prototypic NO producing cells in developing retina protects immature neurons against glutamate toxicity. An explant culture system developed in order to examine cellular responses of immature and adult neurons to glutamate toxicity showed that immature neurons were affected by NMDA but were less responsive to NMDA and NO mediated toxicity. In contrast, adult explants exhibited significant NMDA toxicity which was attenuated by NMDA antagonists, 2-amino-5-phosphonovaleric acid (APV), dextromethorphan (Dex) and N$\rm\sp{G}$-D-methyl arginine (metARG). These results indicated that pan-retinal neurotoxicity via the NMDA receptor and/or NO activation occurred in the adult retina but was not significant in the neonate. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADPH diaphorase (NADPHd) histochemistry labels two types of nitrergic amacrine cells in the rabbit retina. Both the large ND1 cells and the small ND2 cells stratify in the middle of the inner plexiform layer, and their overlapping processes produce a dense plexus, which makes it difficult to trace the morphology of single cells. The complete morphology of the ND1 amacrine cells has been revealed by injecting Neurobiotin into large round somata in the inner nuclear layer, which resulted in the labelling of amacrine cells whose proximal morphology and stratification matched those of the ND1 cells stained by NADPHd histochemistry. The Neurobiotin-injected ND1 cells showed strong homologous tracer coupling to surrounding ND1 cells, and double-labelling experiments confirmed that these coupled cells showed NADPHd reactivity. The ND1 amacrine cells branch in stratum 3 of the inner plexiform layer, where they produce a sparsely branched dendritic tree of 400-600 mum diameter in ventral peripheral retina. In addition, each cell gives rise to several fine beaded processes, which arise either from a side branch of the dendritic tree or from the tapering of a distal dendrite. These axon-like processes branch successively within the vicinity of the dendritic field before extending, with little or no further branching, for 3-5 mm from the soma in ventral peripheral retina. Consequently, these cells may span one-third of the visual field of each eye, and their spatial extent appears to be greater than that of most other types of axon-bearing amacrine cells injected with Neurobiotin in this study. The morphology and tracer-coupling pattern of the ND1 cells are compared with those of confirmed type 1 catecholaminergic cells, a presumptive type 2 catecholaminergic cell, the type 1 polyaxonal. cells, the long-range amacrine cells, a novel type of axon-bearing cell that also branches in stratum 3, and a type of displaced amacrine cell that may correspond to the type 2 polyaxonal cell. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type 1 polyaxonal (PA1) cell is a distinct type of axon-bearing amacrine cell whose soma commonly occupies an interstitial position in the inner plexiform layer; the proximal branches of the sparse dendritic tree produce 1-4 axon-like processes, which form an extensive axonal arbor that is concentric with the smaller dendritic tree (Dacey, 1989; Famiglietti, 1992a,b). In this study, intracellular injections of Neurobiotin have revealed the complete dendritic and axonal morphology of the PA1 cells in the rabbit retina, as well as labeling the local array of PA1 cells through homologous tracer coupling. The dendritic-field area of the PA1 cells increased from a minimum of 0.15 mm(2) (0.44-mm equivalent diameter) on the visual streak to a maximum of 0.67 mm(2) (0.92-mm diameter) in the far periphery; the axonal-field area also showed a 3-fold variation across the retina, ranging from 3.1 mm(2) (2.0-mm diameter) to 10.2 mm(2) (3.6-mm diameter). The increase in dendritic- and axonal-field size was accompanied by a reduction in cell density, from 60 cells/mm(2) in the visual streak to 20 cells/mm(2) in the far periphery, so that the PA1 cells showed a 12 times overlap of their dendritic fields across the retina and a 200-300 times overlap of their axonal fields. Consequently, the axonal plexus was much denser than the dendritic plexus, with each square millimeter of retina containing similar to100 mm of dendrites and similar to1000 mm of axonal processes. The strong homologous tracer coupling revealed that similar to45% of the PA1 somata were located in the inner nuclear layer, similar to50% in the inner plexiform layer, and similar to5% in the ganglion cell layer. In addition, the Neurobiotin-injected PA1 cells sometimes showed clear heterologous tracer coupling to a regular array of small ganglion cells, which were present at half the density of the PA1 cells. The PA1 cells were also shown to contain elevated levels of gamma-aminobutyric acid (GABA), like other axon-bearing amacrine cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta- ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light- On or light- Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors ( LEDs), which respond to spot illumination at both light- On and light- Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only similar to 15% of the ganglion cells, neighboring LEDs are separated by 30 - 40 mu m on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive- field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cholinergic amacrine cells in the rabbit retina slowly accumulate glycine to very high levels when the tissue is incubated with excess sarcosine (methylglycine), even though these cells do not normally contain elevated levels of glycine and do not express high-affinity glycine transporters. Because the sarcosine also depletes the endogenous glycine in the glycine-containing amacrine cells and bipolar cells, the cholinergic amacrine cells can be selectively labeled by glycine immunocytochemistry under these conditions. Incubation experiments indicated that the effect of sarcosine on the cholinergic amacrine cells is indirect: sarcosine raises the extracellular concentration of glycine by blocking its re-uptake by the glycinergic amacrine cells, and the excess glycine is probably taken-up by an unidentified low-affinity transporter on the cholinergic amacrine cells. Neurobiotin injection of the On-Off direction-selective (DS) ganglion cells in sarcosine-incubated rabbit retina was combined with glycine immunocytochemistry to examine the dendritic relationships between the DS ganglion cells and the cholinergic amacrine cells. These double-labeled preparations showed that the dendrites of the DS ganglion cells closely follow the fasciculated dendrites of the cholinergic amacrine cells. Each ganglion cell dendrite located within the cholinergic strata is associated with a cholinergic fascicle and, conversely, there are few cholinergic fascicles that do not contain at least one dendrite from an On-Off DS cell. It is not known how the dendritic co-fasciculation develops, but the cholinergic dendritic plexus may provide the initial scaffold, because the dendrites of the On-Off DS cells commonly run along the outside of the cholinergic fascicles. J. Comp. Neurol. 421:1-13, 2000. (C) 2000 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized a distinctive type of bistratified amacrine cell in the rabbit retina at both the single cell and population levels. These cells correspond to the fountain amacrine cells recently identified by MacNeil and Masland (1998). The fountain cells can be distinguished in superfused retinal wholemounts labeled with nuclear dyes, thus enabling them to be targeted for intracellular injection with Neurobiotin. This revealed that the primary dendrites ascend steeply to sublamina b of the inner plexiform layer, where they form an irregular arbor at the border of strata 4 and 5. These dendrites then give rise to multiple varicose processes that descend obliquely to sublamina a, where they form a more extensive arbor in stratum 1. The fountain amacrine cells show strong homologous tracer coupling when injected with Neurobiotin, and this has enabled us to map their density distribution across the retina and to examine the dendritic relationships between neighboring cells. The fountain amacrine cells range in density from 90 to 360 cells/mm(2) and they account for 1.5% of the amacrine cells in the rabbit retina. The thick tapering dendrites in sublamina b form highly territorial arbors that tile the retina with minimal overlap, whereas the thin varicose processes intermingle in sublamina a. The fountain cells are immunopositive for gamma-aminobutyric acid and immunonegative for glycine. We further propose that these cells are homologous to the substance P-immunoreactive (SP-IR) amacrine cells in the cat retina and that they may account for a subset of the SP-IR amacrine cells in the rabbit retina.