998 resultados para RENAL ISCHEMIA
Resumo:
Previously we have demonstrated that bradykinin B1 receptor deficient mice (B1KO) were protected against renal ischemia and reperfusion injury (IRI). Here, we aimed to analyze the effect of B1 antagonism on renal IRI and to study whether B1R knockout or antagonism could modulate the renal expression of pro and anti-inflammatory molecules. To this end, mice were subjected to 45 minutes ischemia and reperfused at 4, 24, 48 and 120 hours. Wild-type mice were treated intra-peritoneally with antagonists of either B1 (R-954, 200 mg/kg) or B2 receptor (HOE140, 200 mg/kg) 30 minutes prior to ischemia. Blood samples were collected to ascertain serum creatinine level, and kidneys were harvested for gene transcript analyses by real-time PCR. Herein, B1R antagonism ( R-954) was able to decrease serum creatinine levels, whereas B2R antagonism had no effect. The protection seen under B1R deletion or antagonism was associated with an increased expression of GATA-3, IL-4 and IL-10 and a decreased T-bet and IL-1b transcription. Moreover, treatment with R-954 resulted in lower MCP-1, and higher HO-1 expression. Our results demonstrated that bradykinin B1R antagonism is beneficial in renal IRI.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARE Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.
Resumo:
Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.
Resumo:
ATP-dependent K+ channels (K-ATP) account for most of the recycling of K+ which enters the proximal tubules cell via Na, K-ATPase. In the mitochondrial membrane, opening of these channels preserves mitochondrial viability and matrix volume during ischemia. We examined KATP channel modulation in renal ischemia-reperfusion injury (IRI), using an isolated perfused rat kidney (IPRK) model, in control, IRI, IRI + 200 muM diazoxide (a K-ATP opener), IRI + 10 muM glibenclamide (a K-ATP blocker) and IRI + 200 muM diazoxide + 10 muM glibenclamide groups. IRI was induced by 2 periods of warm ischemia, followed by 45 min of reperfusion. IRI significantly decreased glomerular filtration rate (GFR) and increased fractional excretion of sodium (FENa) (p < 0.01). Neither diazoxide nor glibenclamide had an effect on control kidney function other than an increase in renal vascular resistance produced by glibenclamide. Pretreatment with 200 muM diazoxide reduced the postischemic increase in FENa (p < 0.05). Adding 10 muM glibenclamide inhibited the diazoxide effect on postischemic FENa (p < 0.01). Histology showed that kidneys pretreated with glibenclamide demonstrated an increase in injure in the thick ascending limb of outer medulla (p < 0.05). Glibenclamide significantly decreased post ischemic renal vascular resistance (p < 0.05). but had no significant effect on other renal function parameters. Our results suggest that sodium reabsorption is improved by K-ATP activation and blockade of K-ATP channels during IRI has an injury enhancing effect on renal epithelial function and histology. This may be mediated through K-ATP modulation in cell and or mitochondrial inner membrane.
Resumo:
We assessed a kallikrein-like amidase activity probably related to the kallikrein-kinin system, as well as the participation of leukocyte infiltration in renal ischemia and reperfusion. Male C57BL/KSJmdb mice were subjected to 20 or 60 min of ischemia and to different periods of reperfusion. A control group consisted of sham-operated mice, under similar conditions, except for ischemia induction. Kallikrein-like amidase activity, Evans blue extravasation and myeloperoxidase activity were measured in kidney homogenates, previously perfused with 0.9% NaCl. Plasma creatinine concentration increased only in the 60-min ischemic group. After 20 min of ischemia and 1 or 24 h of reperfusion, no change in kallikrein-like amidase activity or Evans blue extravasation was observed. In the mice subjected to 20 min of ischemia, edema was evident at 1 h of reperfusion, but kidney water content returned to basal levels after 24 h of reperfusion. In the 60-min ischemic group, kallikrein-like amidase activity and Evans blue extravasation showed a similar significant increase along reperfusion time. Kallikrein-like amidase activity increased from 4 nmol PNA mg protein-1 min-1 in the basal condition to 15 nmol PNA mg protein-1 min-1 at 10 h of reperfusion. For dye extravasation the concentration measured was near 200 µg of Evans blue/g dry tissue in the basal condition and 1750 µg of Evans blue/g dry tissue at 10 h of reperfusion. No variation could be detected in the control group. A significant increase from 5 to 40 units of DAbs 655 nm g wet tissue-1 min-1 in the activity of the enzyme myeloperoxidase was observed in the 60-min ischemic group, when it was evaluated after 24 h of reperfusion. Histological analysis of the kidneys showed migration of polymorphonuclear leukocytes from the vascular bed to the interstitial tissue in the 60-min ischemic group after 24 h of reperfusion. We conclude that the duration of ischemia is critical for the development of damage during reperfusion and that the increase in renal cortex kallikrein-like amidase activity probably released from both the kidney and leukocytes may be responsible, at least in part, for the observed effects, probably through direct induction of increased vascular permeability.
Resumo:
Calcineurin inhibitors exacerbate ischemic injury in transplanted kidneys, but it is not known if sirolimus protects or exacerbates the transplanted kidney from ischemic injury. We determined the effects of sirolimus alone or in combination with cyclosporin A (CsA) on oxygenated and hypoxic/reoxygenated rat proximal tubules in the following in vitro groups containing 6-9 rats per group: sirolimus (10, 50, 100, 250, 500, and 1000 ηg/mL); CsA (100 µg/mL); sirolimus (50 and 250 ηg/mL) + CsA (100 µg/mL); control; vehicle (20% ethanol). For in vivo studies, 3-week-old Wistar rats (150-250 g) were submitted to left nephrectomy and 30-min renal artery clamping. Renal function and histological evaluation were performed 24 h and 7 days after ischemia (I) in five groups: sham, I, I + SRL (3 mg·kg-1·day-1, po), I + CsA (3 mg·kg-1·day-1, sc), I + SRL + CsA. Sirolimus did not injure oxygenated or hypoxic/reoxygenated proximal tubules and did not potentiate the tubular toxic effects of CsA. Neither drug affected the glomerular filtration rate (GFR) at 24 h. GFR was reduced in CsA-treated rats on day 7 (0.5 ± 0.1 mL/min) but not in rats receiving sirolimus + CsA (0.8 ± 0.1 mL/min) despite the reduction in renal blood flow (3.9 ± 0.5 mL/min). Acute tubular necrosis regeneration was similar for all groups. Sirolimus alone was not toxic and did not enhance hypoxia/reoxygenation injury or CsA toxicity to proximal tubules. Despite its hemodynamic effects, sirolimus protected post-ischemic kidneys against CsA toxicity.
Resumo:
Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.
Resumo:
In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1 beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Ischemia-reperfusion injury is the major cause of organ dysfunction or even nonfunction following transplantation. It can attenuate the long-term survival of transplanted organs. To evaluate the severity of renal ischemia injury determined by histology, we applied laser(442 nm and 532 nm) induced fluorescence (LIF), mitochondria respiration, and membrane swelling to evaluate 28 Wistar rats that underwent left kidney warm ischemia for 20, 40, 60, or 80 minutes. LIF performed before ischemia (control) was repeated at 20, 40, 60, and 80 minutes thereafter. We harvested left kidney tissue samples immediately after LIF determination for histology and mitochondrial analyses: state 3 and 4 respiration, respiration control rate (RCR), and membrane swelling. The association of optic spectroscopy with histological damage showed: LIF, 442 nm (r(2) = 0.39, P < .001) and 532 nm, (r(2) = 0.18, P = .003); reflecting laser/fluorescence-induced, 442 nm (r(2) = 0.20, P = .002) and 532 nm (r(2) = 0.004, P = .67). The associations between mitochondria function and tissue damage were: state 3 respiration (r(2) = 0.43, P = .0004), state 4 respiration (r(2) = 0.03, P = 0.38), RCR (r(2) = 0.28, P = .007), and membrane swelling (r(2) = 0.02, P = .43). The intensity of fluorescence emitted by tissue excited by laser, especially at a wave length of 442 nm, was determined in real time. Mitochondrial state 3 respiration and respiratory control ratio also exhibited good correlations with the grade of ischemic tissue damage.
Resumo:
To evaluate the effect of sildenafil, administered prior to renal ischemia/reperfusion (I/R), by scintigraphy and histopathological evaluation in rats. Methods: Twenty-four rats were divided randomly into two groups. They received 0.1 ml of 99mTechnetium-etilenodicisteine intravenous, and a baseline (initial) renal scintigraphy was performed. The rats underwent 60 minutes of ischemia by left renal artery clamping. The right kidney was not manipulated. The sildenafil group (n=12) received orally 1 mg/kg of sildenafil suspension 60 minutes before ischemia. Treatment with saline 0.9% in the control group (n=12). Half of the rats was assessed after 24 hours and half after seven days I/R, with new renal scintigraphy to study differential function. After euthanasia, kidneys were removed and subjected to histopathological examination. For statistical evaluation, Student t and Mann-Whitney tests were used. Results: In the control group rats, the left kidneys had significant functional deficit, seven days after I/R, whose scintigraphic pattern was consistent with acute tubular necrosis, compared with the initial scintigraphy (p<0.05). Sildenafil treatment resulted in better differential function of the left kidneys 24h after reperfusion, compared with controls. Histopathologically, the left kidney of control rats (24 hours after I/R) showed a higher degree of cellular necrosis when compared with the sildenafil treated rats (p<0.05). Conclusion: Sildenafil had a protective effect in rat kidneys subjected to normothermic I/R, demonstrated by scintigraphy and histomorphometry
Resumo:
Introduction: To study the functional and hystological alterations in dog kidneys submitted to total ischemia for thirty minutes and the possible metoprolol protective action. Material and methods: Sixteen dogs anesthetized with sodium pentobarbital (SP) were studied and divided into two groups: G1-8 dogs submitted to left nephrectomy and right renal artery clamping for thirty minutes, and G2-8 dogs submitted to the same procedures of G1 and to the administration of 0.5 mg.kg(-1) metoprolol before ischemia. Attributes of renal function were studied. Results: There was acute tubular necrosis and a decrease of renal blood flow and glomerular filtration, and a increase of renal vascular resistance in both groups. Conclusion: the thirty minute renal ischemia appears to have determined the alterations found in the renal function and hystology in both groups. Metoprolol, used in G2, as to the time and dose applied didn't protect the kidney from the ischemic episode.
Resumo:
OBJETIVO: Avaliar o efeito da N-acetilcisteína na proteção renal contra lesão de isquemia/reperfusão, quando administrada logo após a indução anestésica, em ratos anestesiados com isoflurano. MÉTODOS: Dezoito ratos Wistar machos pesando mais que 300g foram anestesiados com isoflurano. A jugular interna direita e a carótida esquerda foram dissecadas e canuladas. Os animais foram distribuídos aleatoriamente em GAcetil, recebendo N-acetilcisteína por via intravenosa, 300mg/kg, e GIsot, solução salina. Foi realizada nefrectomia direita e clampeamento da artéria renal esquerda por 45 min. Os animais foram sacrificados após 48h, sendo colhidas amostras sanguíneas após a indução anestésica e ao sacrifício dos mesmos para avaliar a creatinina sérica. Realizou-se histologia renal. RESULTADOS: A variação da creatinina foi 2,33mg/dL ± 2,21 no GAcetil e 4,38mg/dL ± 2,13 no GIsot (p=0,074). Dois animais apresentaram necrose tubular intensa no GAcetil, comparados a cinco no GIsot. Apenas GAcetil apresentou animais livres de necrose tubular (dois) e degeneração tubular (um). CONCLUSÃO: Após isquemia/reperfusão renais, os ratos aos quais se administrou N-acetilcisteína apresentaram menor variação na creatinina sérica e lesões renais mais leves que o grupo controle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)