989 resultados para RANDOM OPTIMIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Omega subset of R-d are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternative sampling procedures are compared to the pure random search method. It is shown that the efficiency of the algorithm can be improved with respect to the expected number of steps to reach an epsilon-neighborhood of the optimal point.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers the problem of dedicated path-protection in wavelength-division multiplexed (WDM) mesh networks with waveband switching functionality under shared risk link group (SRLG) constraints. Two dedicated path protection schemes are proposed, namely the PBABL scheme and the MPABWL scheme. The PBABL scheme protects each working waveband-path through a backup waveband-path. The MPABWL scheme protects each working waveband-path by either a backup waveband-path or multiple backup lightpaths. Heuristic algorithms adopting random optimization technique are proposed for both the schemes. The performance of the two protection schemes is studied and compared. Simulation results show that both the heuristics can obtain optimum solutions and the MPABWL scheme leads to less switching and transmission costs than the PBABL scheme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a natural coordinate system for phylogenetic trees using a correspondence with the set of perfect matchings in the complete graph. This correspondence produces a distance between phylogenetic trees, and a way of enumerating all trees in a minimal step order. It is useful in randomized algorithms because it enables moves on the space of trees that make random optimization strategies “mix” quickly. It also promises a generalization to intermediary trees when data are not decisive as to their choice of tree, and a new way of constructing Bayesian priors on tree space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topology optimization consists in finding the spatial distribution of a given total volume of material for the resulting structure to have some optimal property, for instance, maximization of structural stiffness or maximization of the fundamental eigenfrequency. In this paper a Genetic Algorithm (GA) employing a representation method based on trees is developed to generate initial feasible individuals that remain feasible upon crossover and mutation and as such do not require any repairing operator to ensure feasibility. Several application examples are studied involving the topology optimization of structures where the objective functions is the maximization of the stiffness and the maximization of the first and the second eigenfrequencies of a plate, all cases having a prescribed material volume constraint.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Random amplified polymorphic DNA (RAPD) technique is a simple and reliable method to detect DNA polymorphism. Several factors can affect the amplification profiles, thereby causing false bands and non-reproducibility of assay. In this study, we analyzed the effect of changing the concentration of primer, magnesium chloride, template DNA and Taq DNA polymerase with the objective of determining their optimum concentration for the standardization of RAPD technique for genetic studies of Cuban Triatominae. Reproducible amplification patterns were obtained using 5 pmoL of primer, 2.5 mM of MgCl2, 25 ng of template DNA and 2 U of Taq DNA polymerase in 25 µL of the reaction. A panel of five random primers was used to evaluate the genetic variability of T. flavida. Three of these (OPA-1, OPA-2 and OPA-4) generated reproducible and distinguishable fingerprinting patterns of Triatominae. Numerical analysis of 52 RAPD amplified bands generated for all five primers was carried out with unweighted pair group method analysis (UPGMA). Jaccard's Similarity Coefficient data were used to construct a dendrogram. Two groups could be distinguished by RAPD data and these groups coincided with geographic origin, i.e. the populations captured in areas from east and west of Guanahacabibes, Pinar del Río. T. flavida present low interpopulation variability that could result in greater susceptibility to pesticides in control programs. The RAPD protocol and the selected primers are useful for molecular characterization of Cuban Triatominae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Floor cleaning is a typical robot application. There are several mobile robots aviable in the market for domestic applications most of them with random path-planning algorithms. In this paper we study the cleaning coverage performances of a random path-planning mobile robot and propose an optimized control algorithm, some methods to estimate the are of the room, the evolution of the cleaning and the time needed for complete coverage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lophius gastrophysus has important commercial value in Brazil particularly for foreign trade. In this study, we described the optimization of Random Amplified Polymorphic DNA (RAPD) protocol for identification of L. gastrophysus. Different conditions (annealing temperatures, MgCl concentrations, DNA quantity) were tested to find reproducible and adequate profiles. Amplifications performed with primers A01, ² A02 and A03 generate the best RAPD profiles when the conditions were annealing temperature of 36ºC, 25 ng of DNA quantity and 2.5 mM MgCl2. Exact identification of the species and origin of marine products is necessary and RAPD could be used as an accurate, rapid tool to expose commercial fraud.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lasers with random distributed feedback (DFB) owing to Rayleigh scattering in optical fibers [1] have attracted a great interest: a number of papers demonstrating new laser schemes and applications have been proposed [2-7] recently. Moreover, the generation output power and, more generally, generation power distribution could be described both analytically and numerically within simple balance models [8-9]. However, spectral properties of random DFB fiber lasers are not studied except some attempt made in [10]. Generation spectrum of random DFB fiber laser is quite broad (more than 1 nm), and physical mechanisms of its formation and broadening are still unclear. There is no any practical solution up to date to minimize the generation spectrum width. Here we experimentally show the way to minimize the generation spectral width. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a comprehensive study of power output characteristics of random distributed feedback Raman fiber lasers. The calculated optimal slope efficiency of the backward wave generation in the one-arm configuration is shown to be as high as ∼90% for 1 W threshold. Nevertheless, in real applications a presence of a small reflection at fiber ends can appreciably deteriorate the power performance. The developed numerical model well describes the experimental data. © 2012 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present the optimization of power and spectral performances of the random DFB fiber laser using the balance equation set. The numerical results are in good in agreement with experiments. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we deal with a generalized multi-period mean-variance portfolio selection problem with market parameters Subject to Markov random regime switchings. Problems of this kind have been recently considered in the literature for control over bankruptcy, for cases in which there are no jumps in market parameters (see [Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean variance formulation. IEEE Transactions on Automatic Control, 49, 447-457]). We present necessary and Sufficient conditions for obtaining an optimal control policy for this Markovian generalized multi-period meal-variance problem, based on a set of interconnected Riccati difference equations, and oil a set of other recursive equations. Some closed formulas are also derived for two special cases, extending some previous results in the literature. We apply the results to a numerical example with real data for Fisk control over bankruptcy Ill a dynamic portfolio selection problem with Markov jumps selection problem. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter considers the particle swarm optimization algorithm as a system, whose dynamics is studied from the point of view of fractional calculus. In this study some initial swarm particles are randomly changed, for the system stimulation, and its response is compared with a non-perturbed reference response. The perturbation effect in the PSO evolution is observed in the perspective of the fitness time behaviour of the best particle. The dynamics is represented through the median of a sample of experiments, while adopting the Fourier analysis for describing the phenomena. The influence upon the global dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the system is subjected to random perturbations, and its modelling with fractional order transfer functions.