12 resultados para RAINDROPS
Resumo:
Soil erosion is a natural process that occurs when the force of wind, raindrops or running water on the soil surface exceeds the cohesive forces that bind the soil together. In general, vegetation cover protects the soil from the effects of these erosive forces. However, land management activities such as ploughing, burning or heavy grazing may disturb this protective layer, exposing the underlying soil. The decision making process in rural catchment management is often supported by the predictive modelling of soil erosion and sediment transport processes within the catchment, using established techniques such as the Universal Soil Loss Equation [USLE] and the Agricultural Nonpoint Source pollution model [AGNPS]. In this article, the authors examine the range of erosion models currently available and describe the application of one of these to the Burrishoole catchment on the north-west coast of Ireland, which has suffered heavy erosion of blanket peat in recent years.
Resumo:
Many insects with smooth adhesive pads can rapidly enlarge their contact area by centripetal pulls on the legs, allowing them to cope with sudden mechanical perturbations such as gusts of wind or raindrops. The short time scale of this reaction excludes any neuromuscular control; it is thus more likely to be caused by mechanical properties of the pad's specialized cuticle. This soft cuticle contains numerous branched fibrils oriented almost perpendicularly to the surface. Assuming a fixed volume of the water-filled cuticle, we hypothesized that pulls could decrease the fibril angle, thereby helping the contact area to expand laterally and longitudinally. Three-dimensional fluorescence microscopy on the cuticle of smooth stick insect pads confirmed that pulls significantly reduced the fibril angle. However, the fibril angle variation appeared insufficient to explain the observed increase in contact area. Direct strain measurements in the contact zone demonstrated that pulls not only expand the cuticle laterally, but also add new contact area at the pad's outer edge.
Resumo:
研究表明 ,5~ 7年生沙棘林冠层可截留降水 8 5%~ 4 9 0 % ,并降低雨滴动能 ;枯枝落叶层重5 4 6t·hm- 2 ,其最大持水量可达 15 31t·hm- 2 ,有 1cm厚枯枝落叶层覆盖地表 ,即可基本控制水土流失 ;根系可以提高土壤的抗冲性和抗蚀性 ,与无根系土壤相比 ,可减少土壤冲刷量 55%~ 88% .据1988~ 1994年雨季径流小区测定 ,沙棘林在栽植后 4~ 5年可充分发挥水土保持作用 ,与农地相比 ,可减少地表径流量 87 1% ,减少土壤流失量 99 0 % .此外 ,它还可以每 4~ 5年提供薪材 10~ 30t·hm- 2 ,提高土壤中有机质和氮素含量 115%和 90 % ,生产沙棘果实 50 0kg·hm- 2 .所有这些表明了沙棘在治理黄土高原水土流失和改善人民生活条件 ,在实现由“恶性循环”向“良性循环”转变等方面 ,具有十分重要的作用 .目前 ,黄土地区已建立起若干利用沙棘固坡、防洪、解决燃料短缺和综合治理小流域的成功典型
Resumo:
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.
Resumo:
Measurements of down-welling microwave radiation from raining clouds performed with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) radiometer at 10.7-21-36.5 GHz during the Global Precipitation Measurement Ground Validation ""Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement"" (CHUVA) campaign held in Brazil in March 2010 represent a unique test bed for understanding three-dimensional (3D) effects in microwave radiative transfer processes. While the necessity of accounting for geometric effects is trivial given the slant observation geometry (ADMIRARI was pointing at a fixed 30 elevation angle), the polarization signal (i.e., the difference between the vertical and horizontal brightness temperatures) shows ubiquitousness of positive values both at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This signature is a genuine and unique microwave signature of radiation side leakage which cannot be explained in a 1D radiative transfer frame but necessitates the inclusion of three-dimensional scattering effects. We demonstrate these effects and interdependencies by analyzing two campaign case studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic media like precipitating clouds.
Resumo:
Arthropods are abundant organisms possess great wealth and diversity representing about 82% of all known animal species. Contribute as a source of biomass and their abundance is an indicator of ecological change. The aim of this study was to evaluate the biomass and abundance found in the salt marsh environment throughout the year and relate them to the climatic factors (temperature, precipitation and relative humidity) that can influence the abundance and biomass of arthropods. The study was conducted at the Centro de Lançamento de Foguetes Barreira do Inferno, city of Parnamirim, Rio Grande do Norte, in the period February 2011 to January 2012, using pitfall traps, stationary window and beating tray. Among the 26 orders found, the most abundant were: Hymenoptera, Orthoptera, Araneae. Taxa Hymenoptera, Blattodea and Orthoptera showed higher biomass volume. Climatic factors did not influence the fall of Arthropods in the traps, however, the lowest abundance during the rainy season the action of raindrops, reduced the activity of these arthropods on vegetation, reducing its capture in traps (pitfall traps and stationary window ) and method of collection(entomological umbrella)
Resumo:
A cobertura vegetal do solo é decisiva para redução dos efeitos erosivos do impacto direto das gotas de chuva na superfície do solo. Desta forma, objetivou-se com este estudo determinar o índice de cobertura vegetal (CV) e desenvolver modelos para sua estimativa para a cultura da soja, usando os atributos climáticos no período de chuvas intensas no Sul de Minas Gerais. As determinações da CV foram feitas semanalmente, na área experimental do Departamento de Ciência do Solo, Universidade Federal de Lavras (UFLA), no período de novembro de 1999 a maio de 2000, em 28 cultivares de soja com potencial para cultivo nesta região. Para avaliação da cobertura vegetal foi utilizada a metodologia descrita por Stocking (1988). Na modelagem procurou-se relacionar a CV com os valores acumulados dos seguintes atributos climáticos: temperatura média (Tmed), precipitação (PREC) e umidade relativa do ar (UR). Os valores de cobertura vegetal apresentaram uma amplitude de variação de 56 a 83%, sendo BR 162, LO 12 L e M. Soy 108 as cultivares mais eficientes e FT Abyara e Tucano as menos eficientes. O hábito diferencial de crescimento das cultivares ajuda a explicar esse comportamento. O modelo ajustado adequado para estimativa da CV foi: CV = 116589,976 + 0,422 . Tmed + 0,132 . PREC - 0,095 . UR + 0,000024 . Tmed², R² = 0,99 (P < 0,01). A determinação da CV nas diferentes fases de desenvolvimento da cultura é de grande importância, uma vez que seu estabelecimento coincide com o período de maior potencial erosivo das chuvas na região estudada.
Resumo:
Aerosol particles and water vapour are two important constituents of the atmosphere. Their interaction, i.e. thecondensation of water vapour on particles, brings about the formation of cloud, fog, and raindrops, causing the water cycle on the earth, and being responsible for climate changes. Understanding the roles of water vapour and aerosol particles in this interaction has become an essential part of understanding the atmosphere. In this work, the heterogeneous nucleation on pre-existing aerosol particles by the condensation of water vapour in theflow of a capillary nozzle was investigated. Theoretical and numerical modelling as well as experiments on thiscondensation process were included. Based on reasonable results from the theoretical and numerical modelling, an idea of designing a new nozzle condensation nucleus counter (Nozzle-CNC), that is to utilise the capillary nozzle to create an expanding water saturated air flow, was then put forward and various experiments were carried out with this Nozzle-CNC under different experimental conditions. Firstly, the air stream in the long capillary nozzle with inner diameter of 1.0~mm was modelled as a steady, compressible and heat-conducting turbulence flow by CFX-FLOW3D computational program. An adiabatic and isentropic cooling in the nozzle was found. A supersaturation in the nozzle can be created if the inlet flow is water saturated, and its value depends principally on flow velocity or flow rate through the nozzle. Secondly, a particle condensational growth model in air stream was developed. An extended Mason's diffusion growthequation with size correction for particles beyond the continuum regime and with the correction for a certain particle Reynolds number in an accelerating state was given. The modelling results show the rapid condensational growth of aerosol particles, especially for fine size particles, in the nozzle stream, which, on the one hand, may induce evident `over-sizing' and `over-numbering' effects in aerosol measurements as nozzle designs are widely employed for producing accelerating and focused aerosol beams in aerosol instruments like optical particle counter (OPC) and aerodynamical particle sizer (APS). It can, on the other hand, be applied in constructing the Nozzle-CNC. Thirdly, based on the optimisation of theoretical and numerical results, the new Nozzle-CNC was built. Under various experimental conditions such as flow rate, ambient temperature, and the fraction of aerosol in the total flow, experiments with this instrument were carried out. An interesting exponential relation between the saturation in the nozzle and the number concentration of atmospheric nuclei, including hygroscopic nuclei (HN), cloud condensation nuclei (CCN), and traditionally measured atmospheric condensation nuclei (CN), was found. This relation differs from the relation for the number concentration of CCN obtained by other researchers. The minimum detectable size of this Nozzle-CNC is 0.04?m. Although further improvements are still needed, this Nozzle-CNC, in comparison with other CNCs, has severaladvantages such as no condensation delay as particles larger than the critical size grow simultaneously, low diffusion losses of particles, little water condensation at the inner wall of the instrument, and adjustable saturation --- therefore the wide counting region, as well as no calibration compared to non-water condensation substances.
Resumo:
The relationship between the daily deposition of soredia of Hypogymnia physodes (L.) Nyl. and local climatic records was studied in the field during three periods at a site in Seattle, WA, U.S.A: (1) 11 August – 16 September 1986 (Study A); (2) 16 December – 11 January 1987 (Study B) and (3) 8 July 1988 – 30 January 1989 (Study C). The soredia were trapped on adhesive strips placed at various locations on a Prunus blireiana L. tree for 24 hr periods. A correlation matrix of the data from all three studies revealed a negative correlation between soredial deposition and relative humidity; and a positive correlation with rainfall and temperature. A multiple regression and forward stepwise regression analysis selected relative humidity as the most significant climatic variable, i.e. more soredia tended to be deposited when relative humidity was low. Analysis of individual studies by multiple regression revealed: (1) no significant relationships between soredial deposition and climate in Study A; (2) positive relationships with temperature and wind speed in Study B and (3) positive relationships with wind speed and rainfall in the summer/autumn months of Study C; in the winter months no relationships with climate were found because few soredia were deposited. The data suggest that in the field seasonal photoperiod differences combined with moderately high temperatures and high relative humidity may promote soredial formation and accumulation on thalli prior to soredia dispersal. In addition, low relative humidity may promote soredial release while wind and raindrops may be possible agents of dispersal.
Resumo:
Precipitation data collected from five sites in south Florida indicate a strong seasonal and spatial variation in δ18O and δD, despite the relatively limited geographic coverage and low-lying elevation of each of the collection sites. Based upon the weighted-mean stable isotope values, the sites were classified as coastal Atlantic, inland, and lower Florida Keys. The coastal Atlantic sites had weighted-mean values of δ18O and δD of −2.86‰ and −12.8‰, respectively, and exhibited a seasonal variation with lower δ18O and δD values in the summer wet-season precipitation (δ18O = −3.38‰, δD = −16.5‰) as compared to the winter-time precipitation (δ18O = −1.66‰, δD = −3.2‰). The inland site was characterized as having the highest d-excess value (+13.3‰), signifying a contribution of evaporated Everglades surface water to the local atmospheric moisture. In spite of its lower latitude, the lower Keys site located at Long Key had the lowest weighted-mean stable isotope values (δ18O = −3.64‰, δD = −20.2‰) as well as the lowest d-excess value of (+8.8‰). The lower δD and δ18O values observed at the Long Key site reflect the combined effects of oceanic vapor source, fractionation due to local precipitation, and slower equilibration of the larger raindrops nucleated by a maritime aerosol. Very low δ18O and δD values (δ18O < −6‰, δD < −40‰) were observed just prior to the passage of hurricanes from the Gulf of Mexico as well as during cold fronts from the north-west. These results suggest that an oceanic vapor source region to the west, may be responsible for the extremely low δD and δ18O values observed during some tropical storms and cold fronts.
Resumo:
Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^