86 resultados para Quinoxaline cavitand
Resumo:
In the last decade, phosphonate and quinoxaline cavitand have been extensively studied, highlighting their outstanding recognition properties. Their successful applications in material science and sensing open the way to new potential applications, such as border security, environmental monitoring and chiral recognition. The present thesis explores the recognition properties of phosphonate and quinoxaline cavitands towards new targets, for molecular recognition and sensing applications. Chapter 2 highlights the enantioselective behavior of phosphonate cavitands towards chiral guests in the solid state and in solution. Phosphonate cavitands were exploited for the molecular recognition of L-lactic acid (chapter 3), a widespread natural molecule which offer multiple potential applications, and a human sweat marker used for the detection of human presence (chapter 4). The second part is devoted to sensing applications of quinoxaline cavitands. Chapter 5 describes the use of QxCav for the preconcentration of drugs precursors, while chapter 6 reports the design, synthesis and grafting of a rigidified EtQxBox on a silicon wafer.
Resumo:
The crystal structure of TANDEM (des-N-tetramethyltriostin A), a synthetic analogue of the quinoxaline antibiotic triostin A, has been determined independently at -135 and 7 'C and refined to R values of 0.088 and 0.147, respectively. The molecule has approximate 2-fold symmetry, with the quinoxaline chromophores and the disulfide cross-bridge projecting from opposite sides of the peptide ring. The quinoxaline groups are nearly parallel to each other and separated by about 6.5 A. The peptide backbone resembles a distorted antiparallel 13 ribbon joined by intramolecular hydrogen bonds N-H(LVal)--O(L-Ala). At low temperatures, the TANDEM molecule is surrounded by a regular first- and second-order hydration sphere containing 14 independent water molecules. At room temperature, only the first-order hydration shell is maintained. Calculations of the interplanar separation of the quinoxaline groups as a function of their orientation with respect to the peptide ring support the viability of TANDEM to intercalate bifunctionally into DNA.
Resumo:
A new Z' = 1 crystal structure of quinoxaline (or 1,4-diazanaphthalene), C8H6N2, with one-fifth the volume of the earlier known Z' = 5 structure was obtained by means of an in situ cryocrystallization technique.
Resumo:
The Z' = 1 and Z' = 5 structures of quinoxaline are compared. The nature of the intermolecular interactions in the Z' = 5 structure is studied by means of variable-temperature single-crystal X-ray diffraction. The C-H center dot center dot center dot N and pi ... pi it interactions in these structures are of a stabilizing nature. The high Z' structure has the better interactions, whereas the low Z' structure has the better stability. This trade-off is a recurrent theme in molecular crystals and is a manifestation of the distinction between thermodynamically and kinetically favoured crystal forms.
Resumo:
We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.
Resumo:
Three new solution processable quinoxaline based donor-acceptor-donor (D-A-D) type molecules have been synthesized for application in field effect transistors. These molecules were characterized by UV-visible spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and cyclic voltammetry. DFT calculation gives deeper insight into the electronic structure of these molecules. The crystallinity and morphology features of thin film were investigated using X-ray diffraction. These molecules show liquid crystalline phase confirmed by DSC and optical polarizing microscopy. Investigation of their field effect transistor performance indicated that these molecules exhibited p-type mobility up to 9.7 x 10 (4) cm(2) V (1) s (1) and on/off ratio of 10(4). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Transition metal-free acylation of isoquinoline, quinoline, and quinoxaline derivatives has been developed employing a cross dehydrogenative coupling (CDC) reaction with aldehydes using substoichiometric amount of TBAB (tetrabutylammonium bromide, 30 mol %) and K2S2O8 as an oxidant. This intermolecular acylation of electron-deficient heteroarenes provides an easy access and a novel acylation method of heterocyclic compounds. The application of this CDC strategy for acylation strategy has been illustrated in synthesizing isoquinoline-derived natural products.
Resumo:
O presente trabalho descreve o estudo da actividad e antimicrobiana de quarto derivados da quinoxalina N,N-dióxido: quinoxalina 1,4-dióxido, 2-metilquinoxalina 1,4- dióxido, 6-cloro-2,3-dimetilquinoxalina 1,4-dióxido e 3-benzoil-2-metilquinoxalina 1,4- dióxido contra as estirpes bacterianas Geobacillus stearothermophilus ATCC 10149, Escherichia coli ATCC 25922, Escherichia coli HB101, Escherichia coli (blaTEM, blaCTX-M) e Salmonella (blaCTX-M), assim como contra a estirpe de levedura Saccharomyces cerevisiae PYCC 4072. A determinação da concentração mínima inibitória (MIC) foi realizada pelo método de diluição. Os valores de MIC’s foram estimados para cada composto e estirpe. Os resultados obtidos sugerem potenciais novas drogas para quimioterapia.
Resumo:
The mononuclear cobalt(II) complex [CoL2] H2O (where HL is quinoxaline-2-carboxalidine- 2-amino-5-methylphenol) has been prepared and characterized by elemental analysis, conductivity measurement, IR, UV-Vis spectroscopy, TG-DTA, and X-ray structure determination. The crystallographic study shows that cobalt(II) is distorted octahedral with each tridentate NNO Schiff base in a cis arrangement. The crystal exhibits a 2-D polymeric structure parallel to [010] plane, formed by O-H...N and O-H... O intermolecular hydrogen bonds and pye stacking interactions, as a racemic mixture of optical enantiomers. The ligand is a Schiff base derived from quinoxaline-2-carboxaldehyde
Resumo:
The Schiff base compounds N,N0-bis[(E)-quinoxalin-2-ylmethylidene] propane-1,3-diamine, C21H18N6, (I), and N,N0-bis[(E)- quinoxalin-2-ylmethylidene]butane-1,4-diamine, C22H20N6, (II), crystallize in the monoclinic crystal system. These molecules have crystallographically imposed symmetry. Compound (I) is located on a crystallographic twofold axis and (II) is located on an inversion centre. The molecular conformations of these crystal structures are stabilized by aromatic pye stacking interactions.
Studies on Some Transition Metal Complexes of Schiff Bases Derived from Quinoxaline-2-carboxaldehyde
Resumo:
Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.
Resumo:
Some new transition metal complexes of the Schiff base quinoxaline-2-car boxalidene-2-aminophenol (HQAP) have been synthesized and characterized by elemental analyses, conductance and magnetic measurements and IR and UV-Visible spectral studies. The complexes have the following empirical formulae: [Mn(QAP121, [Fe(QAPl2C1I, [Co(QAPl21, [Ni(QAP121 and [Cu(QAP121. A tetrahedral structure has been assigned for the manganese(=), cobalt(II1, nickel(II1 and copper(II1 complexes. For the iron(IIIl complex an octahedral dimeric structure has been suggested
Resumo:
In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.
Resumo:
Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.The convenient route of synthesis and thermal stability of Schiff base complexes have contributed significantly for their possible applications in catalysis,biology,medicine and photonics.Significant variations in cataltytic activity with structure and type are observed for these complexes.The thesis deals with synthsis and characterization of transition metal complexes of quinoxaline based Schiff base ligands and their catalytic activity study.The Schiff bases synthesized in the present study are quinoxaline-2-carboxalidine-2-amino-5-methylphenol,3-hydroxyquinoxaline-2-carboxalidine-2-amino-5-methylphenol,quinoxaline-2-aminothiophenol.They provide great structural diversity during complexation.To the best of our knowledge, the transition metal complexes of quinoxaline based Schiff bases are poorly utilised in academic and industrial research.