996 resultados para Queuing theory
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
ABSTRACT OBJECTIVE To estimate the required number of public beds for adults in intensive care units in the state of Rio de Janeiro to meet the existing demand and compare results with recommendations by the Brazilian Ministry of Health. METHODS The study uses a hybrid model combining time series and queuing theory to predict the demand and estimate the number of required beds. Four patient flow scenarios were considered according to bed requests, percentage of abandonments and average length of stay in intensive care unit beds. The results were plotted against Ministry of Health parameters. Data were obtained from the State Regulation Center from 2010 to 2011. RESULTS There were 33,101 medical requests for 268 regulated intensive care unit beds in Rio de Janeiro. With an average length of stay in regulated ICUs of 11.3 days, there would be a need for 595 active beds to ensure system stability and 628 beds to ensure a maximum waiting time of six hours. Deducting current abandonment rates due to clinical improvement (25.8%), these figures fall to 441 and 417. With an average length of stay of 6.5 days, the number of required beds would be 342 and 366, respectively; deducting abandonment rates, 254 and 275. The Brazilian Ministry of Health establishes a parameter of 118 to 353 beds. Although the number of regulated beds is within the recommended range, an increase in beds of 122.0% is required to guarantee system stability and of 134.0% for a maximum waiting time of six hours. CONCLUSIONS Adequate bed estimation must consider reasons for limited timely access and patient flow management in a scenario that associates prioritization of requests with the lowest average length of stay.
Resumo:
Primääripakatun tuotteen liiketoiminnallisen arvoketjun kustannusrakenteen tunnistaminen tuo merkittävää lisäarvoa pakkausliiketoiminnan suunnittelua koskevaan päätöksentekoon. Tämän konstruktiivisen tutkimuksen tavoitteena on rakentaa pakkaustuotannon liiketoiminnallisen arvoketjun simulointimalli, jonka avulla voidaan analysoida pakkaustuotannon arvoketjun kustannusrakennetta lähtien pakkausraaka-aineen valmistuksesta ja päättyen kaupan vähittäismyyntiin. Käytettävä tutkimusaineisto koostuu jonoteoriaan ja tuotannonsuunnitteluun liittyvästä kirjallisuudesta, tieteellisistä artikkeleista sekä asiantuntijalausunnoista. Tutkimuksen yhteydessä rakennetun simulointimallin avulla määritettiin erään primääripakatun tuotteen konvertointivaiheen optimaalinen valmistuseräkoko ja liiketoiminnallisen arvoketjun kustannusrakenne. Arvoketjuanalyysissä primääripakatun tuotteen kustannustekijöiksi määritettiin pakkausmateriaali, pakkausvalmistus, pakattava tuote, pakkauksen täyttö ja suljenta sekä pakatun tuotteen jakelulogistiikka ja vähittäismyynti. Arvoketjuanalyysin johtopäätöksenä voidaan todeta, että primääripakatulle esimerkkituotteelle kohdistuvista kustannuksista noin 97 % on brand ownerin ja vähittäismyynnin aiheuttamia ja noin 3 % varsinaisesta tuotteen pakkaamisesta aiheutuvia.
Resumo:
Cochin University Of Science And Technology
Resumo:
Este trabajo de grado pretende dar a conocer como se ha optimizado el tiempo de respuesta de una empresa de ambulancias de Bogotá y como esto ha colaborado en que los servicios de urgencia de la ciudad hayan mejorado su calidad y su oferta. El nombre de la empresa de ambulancias es Transporte Ambulatorio Medico Ltda. y se hace una breve reseña de su historia dentro del documento. Para lograr demostrar si en realidad ha ocurrido una mejora se utilizo como base un estudio previo realizado en la universidad de los andes versus un muestre actual que los autores de este trabajo realizaron. Se utilizaron principios de teoría de colas y herramientas estadísticas para colaborar con las conclusiones del presente documento Los autores también proponen una posible solución para mejorar aun más el tiempo de respuesta.
Resumo:
En este documento se revisa teóricamente la distribución de probabilidad de Poisson como función que asigna a cada suceso definido, sobre una variable aleatoria discreta, la probabilidad de ocurrencia en un intervalo de tiempo o región del espacio disjunto. Adicionalmente se revisa la distribución exponencial negativa empleada para modelar el intervalo de tiempo entre eventos consecutivos de Poisson que ocurren de manera independiente; es decir, en los cuales la probabilidad de ocurrencia de los eventos sucedidos en un intervalo de tiempo no depende de los ocurridos en otros intervalos de tiempo, por esta razón se afirma que es una distribución que no tiene memoria. El proceso de Poisson relaciona la función de Poisson, que representa un conjunto de eventos independientes sucedidos en un intervalo de tiempo o región del espacio con los tiempos dados entre la ocurrencia de los eventos según la distribución exponencial negativa. Los anteriores conceptos se usan en la teoría de colas, rama de la investigación de operaciones que describe y brinda soluciones a situaciones en las que un conjunto de individuos o elementos forman colas en espera de que se les preste un servicio, por lo cual se presentan ejemplos de aplicación en el ámbito médico.
Resumo:
In multiple-input multiple-output (MIMO) radar systems, the transmitters emit orthogonal waveforms to increase the spatial resolution. New frequency hopping (FH) codes based on chaotic sequences are proposed. The chaotic sequences have the characteristics of good encryption, anti-jamming properties and anti-intercept capabilities. The main idea of chaotic FH is based on queuing theory. According to the sensitivity to initial condition, these sequences can achieve good Hamming auto-correlation while also preserving good average correlation. Simulation results show that the proposed FH signals can achieve lower autocorrelation side lobe level and peak cross-correlation level with the increasing of iterations. Compared to the LFM signals, this sequence has higher range-doppler resolution.
Resumo:
In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, pp. 144–155, 2005) by considering the possibility that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT). Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is bounded. In this model we show the universal stability of two families of policies related to SIS and LIS respectively (the priority of a packet in these policies depends on the arrival time and a function of the path traversed). The bounds we obtain in this case depend on the maximum difference between clocks. This is a necessary requirement, since we also show that LIS is not universally stable in systems without bounded clock difference. We then present a new policy that we call Longest in Queues (LIQ), which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation results that compare the behavior of some of these policies in a network with stochastic injection of packets.
Resumo:
In this paper we generalize the Continuous Adversarial Queuing Theory (CAQT) model (Blesa et al. in MFCS, Lecture Notes in Computer Science, vol. 3618, pp. 144–155, 2005) by considering the possibility that the router clocks in the network are not synchronized. We name the new model Non Synchronized CAQT (NSCAQT). Clearly, this new extension to the model only affects those scheduling policies that use some form of timing. In a first approach we consider the case in which although not synchronized, all clocks run at the same speed, maintaining constant differences. In this case we show that all universally stable policies in CAQT that use the injection time and the remaining path to schedule packets remain universally stable. These policies include, for instance, Shortest in System (SIS) and Longest in System (LIS). Then, we study the case in which clock differences can vary over time, but the maximum difference is bounded. In this model we show the universal stability of two families of policies related to SIS and LIS respectively (the priority of a packet in these policies depends on the arrival time and a function of the path traversed). The bounds we obtain in this case depend on the maximum difference between clocks. This is a necessary requirement, since we also show that LIS is not universally stable in systems without bounded clock difference. We then present a new policy that we call Longest in Queues (LIQ), which gives priority to the packet that has been waiting the longest in edge queues. This policy is universally stable and, if clocks maintain constant differences, the bounds we prove do not depend on them. To finish, we provide with simulation results that compare the behavior of some of these policies in a network with stochastic injection of packets.
Resumo:
This paper is concerned with the study of non-Markovian queuing systems in container terminals. The methodology presented has been applied to analyze the ship traffic in the port of Valencia located in the Western Mediterranean. Two container terminals have been studied: the public container terminal of NOATUM and the dedicated container terminal of MSC. This paper contains the results of a simulation model based on queuing theory. The methodology presented is found to be effective in replicating realistic ship traffic operations in port as well as in conducting capacity evaluations. Thus the methodology can be used for capacity planning (long term), tactical planning (medium term) and even for the container terminal design (port enlargement purposes).
Resumo:
El correcto pronóstico en el ámbito de la logística de transportes es de vital importancia para una adecuada planificación de medios y recursos, así como de su optimización. Hasta la fecha los estudios sobre planificación portuaria se basan principalmente en modelos empíricos; que se han utilizado para planificar nuevas terminales y desarrollar planes directores cuando no se dispone de datos iniciales, analíticos; más relacionados con la teoría de colas y tiempos de espera con formulaciones matemáticas complejas y necesitando simplificaciones de las mismas para hacer manejable y práctico el modelo o de simulación; que requieren de una inversión significativa como para poder obtener resultados aceptables invirtiendo en programas y desarrollos complejos. La Minería de Datos (MD) es un área moderna interdisciplinaria que engloba a aquellas técnicas que operan de forma automática (requieren de la mínima intervención humana) y, además, son eficientes para trabajar con las grandes cantidades de información disponible en las bases de datos de numerosos problemas prácticos. La aplicación práctica de estas disciplinas se extiende a numerosos ámbitos comerciales y de investigación en problemas de predicción, clasificación o diagnosis. Entre las diferentes técnicas disponibles en minería de datos las redes neuronales artificiales (RNA) y las redes probabilísticas o redes bayesianas (RB) permiten modelizar de forma conjunta toda la información relevante para un problema dado. En el presente trabajo se han analizado dos aplicaciones de estos casos al ámbito portuario y en concreto a contenedores. En la Tesis Doctoral se desarrollan las RNA como herramienta para obtener previsiones de tráfico y de recursos a futuro de diferentes puertos, a partir de variables de explotación, obteniéndose valores continuos. Para el caso de las redes bayesianas (RB), se realiza un trabajo similar que para el caso de las RNA, obteniéndose valores discretos (un intervalo). El principal resultado que se obtiene es la posibilidad de utilizar tanto las RNA como las RB para la estimación a futuro de parámetros físicos, así como la relación entre los mismos en una terminal para una correcta asignación de los medios a utilizar y por tanto aumentar la eficiencia productiva de la terminal. Como paso final se realiza un estudio de complementariedad de ambos modelos a corto plazo, donde se puede comprobar la buena aceptación de los resultados obtenidos. Por tanto, se puede concluir que estos métodos de predicción pueden ser de gran ayuda a la planificación portuaria. The correct assets’ forecast in the field of transportation logistics is a matter of vital importance for a suitable planning and optimization of the necessary means and resources. Up to this date, ports planning studies were basically using empirical models to deal with new terminals planning or master plans development when no initial data are available; analytical models, more connected to the queuing theory and the waiting times, and very complicated mathematical formulations requiring significant simplifications to acquire a practical and easy to handle model; or simulation models, that require a significant investment in computer codes and complex developments to produce acceptable results. The Data Mining (DM) is a modern interdisciplinary field that include those techniques that operate automatically (almost no human intervention is required) and are highly efficient when dealing with practical problems characterized by huge data bases containing significant amount of information. These disciplines’ practical application extends to many commercial or research fields, dealing with forecast, classification or diagnosis problems. Among the different techniques of the Data Mining, the Artificial Neuronal Networks (ANN) and the probabilistic – or Bayesian – networks (BN) allow the joint modeling of all the relevant information for a given problem. This PhD work analyses their application to two practical cases in the ports field, concretely to container terminals. This PhD work details how the ANN have been developed as a tool to produce traffic and resources forecasts for several ports, based on exploitation variables to obtain continuous values. For the Bayesian networks case (BN), a similar development has been carried out, obtaining discreet values (an interval). The main finding is the possibility to use ANN and BN to estimate future needs of the port’s or terminal’s physical parameters, as well as the relationship between them within a specific terminal, that allow a correct assignment of the necessary means and, thus, to increase the terminal’s productive efficiency. The final step is a short term complementarily study of both models, carried out in order to verify the obtained results. It can thus be stated that these prediction methods can be a very useful tool in ports’ planning.
Resumo:
We define a capacity reserve model to dimension passenger car service installations according to the demographic distribution of the area to be serviced by using hospital?s emergency room analogies. Usually, service facilities are designed applying empirical methods, but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer?s real demand and the service?s capacity. Our research establishes a valid methodology and covers the absence of recent researches and the lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never studied before. The new indicators are intended to optimize the service operation. This set of new indicators could be implemented in the information systems used in the passenger car services.
Resumo:
El objetivo de esta investigación consiste en definir un modelo de reserva de capacidad, por analogías con emergencias hospitalarias, que pueda ser implementado en el sector de servicios. Este está específicamente enfocado a su aplicación en talleres de servicio de automóviles. Nuestra investigación incorpora la incertidumbre de la demanda en un modelo singular diseñado en etapas que agrupa técnicas ARIMA, teoría de colas y simulación Monte Carlo para definir los conceptos de capacidad y ocupación de servicio, que serán utilizados para minimizar el coste implícito de la reserva capacidad necesaria para atender a clientes que carecen de cita previa. Habitualmente, las compañías automovilísticas estiman la capacidad de sus instalaciones de servicio empíricamente, pero los clientes pueden llegar bajo condiciones de incertidumbre que no se tienen en cuenta en dichas estimaciones, por lo que existe una diferencia entre lo que el cliente realmente demanda y la capacidad que ofrece el servicio. Nuestro enfoque define una metodología válida para el sector automovilístico que cubre la ausencia genérica de investigaciones recientes y la habitual falta de aplicación de técnicas estadísticas en el sector. La equivalencia con la gestión de urgencias hospitalarias se ha validado a lo largo de la investigación en la se definen nuevos indicadores de proceso (KPIs) Tal y como hacen los hospitales, aplicamos modelos estocásticos para dimensionar las instalaciones de servicio de acuerdo con la distribución demográfica del área de influencia. El modelo final propuesto integra la predicción del coste implícito en la reserva de capacidad para atender la demanda no prevista. Asimismo, se ha desarrollado un código en Matlab que puede integrarse como un módulo adicional a los sistemas de información (DMS) que se usan actualmente en el sector, con el fin de emplear los nuevos indicadores de proceso definidos en el modelo. Los resultados principales del modelo son nuevos indicadores de servicio, tales como la capacidad, ocupación y coste de reserva de capacidad, que nunca antes han sido objeto de estudio en la industria automovilística, y que están orientados a gestionar la operativa del servicio. ABSTRACT Our aim is to define a Capacity Reserve model to be implemented in the service sector by hospital's emergency room (ER) analogies, with a practical approach to passenger car services. A stochastic model has been implemented using R and a Monte Carlo simulation code written in Matlab and has proved a very useful tool for optimal decision making under uncertainty. The research integrates demand uncertainty in a unique model which is built in stages by implementing ARIMA forecasting, Queuing Theory and a Monte Carlo simulation to define the concepts of service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Usually, passenger car companies estimate their service facilities capacity using empirical methods, but customers arrive under uncertain conditions not included in the estimations. Thus, there is a gap between customer’s real demand and the dealer’s capacity. This research sets a valid methodology for the passenger car industry to cover the generic absence of recent researches and the generic lack of statistical techniques implementation. The hospital’s emergency room (ER) equalization has been confirmed to be valid for the passenger car industry and new process indicators have been defined to support the study. As hospitals do, we aim to apply stochastic models to dimension installations according to the demographic distribution of the area to be serviced. The proposed model integrates the prediction of the cost implicit in the reserve capacity to serve unexpected demand. The Matlab code could be implemented as part of the existing information technology systems (ITs) to support the existing service management tools, creating a set of new process indicators. Main model outputs are new indicators, such us Capacity, Occupancy and Cost of Capacity Reserve, never studied in the passenger car service industry before, and intended to manage the service operation.
Resumo:
Bibliography: p. 67-68.
Resumo:
Bibliography: p. 25-28.