916 resultados para Quartz crystal microbalance with dissipation monitoring


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quartz crystal microbalance (QCM) technique has been applied for monitoring the biorecognition of ArtinM lectins at low horseradish peroxidase glycoprotein (HRP) concentrations, using a simple kinetic model based on Langmuir isotherm in previous work.18 The latter approach was consistent with the data at dilute conditions but it fails to explain the small differences existing in the jArtinM and rArtinM due to ligand binding concentration limit. Here we extend this analysis to differentiate sugar-binding event of recombinant (rArtinM) and native (jArtinM) ArtinM lectins beyond dilute conditions. Equivalently, functionalized quartz crystal microbalance with dissipation monitoring (QCM-D) was used as real-time label-free technique but structural-dependent kinetic features of the interaction were detailed by using combined analysis of mass and dissipation factor variation. The stated kinetic model not only was able to predict the diluted conditions but also allowed to differentiate ArtinM avidities. For instance, it was found that rArtinM avidity is higher than jArtinM avidity whereas their conformational flexibility is lower. Additionally, it was possible to monitor the hydration shell of the binding complex with ArtinM lectins under dynamic conditions. Such information is key in understanding and differentiating protein binding avidity, biological functionality, and kinetics. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths.  We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process.  We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemical quartz crystal microbalance was employed to monitor directly the growth of vanadium hexacyanoferrate (VHF) films on platinum substrates during electrodeposition and interfacial coagulation in the solution containing sulfuric acid electrolyte, vanadium(IV) and hexacyanoferrate(III). Mass changes of the gold/crystal working electrode were correlated with cyclic voltammetry data. Effects of cations (NH4+, Li+, Na+ and K+), anions (SO42- and NO3-) and solvent during redox reactions of the films were studied. The results show that cations were incorporated into the film during reduction and expelled from the film during oxidation. Solvent also participates in VHF electrochemistry, and its role cannot be neglected. Anions play no role in VHF electrochemistry. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel electrochemical route is used to form highly {111}-oriented and size-controlled Au nanoprisms directly onto the electrodes of quartz crystal microbalances (QCMs) which are subsequently used as mercury vapor sensors. The Au nanoprism loaded QCM sensors exhibited excellent response–concentration linearity with a response enhancement of up to ~ 800% over a non-modified sensor at an operating temperature of 28 °C. The increased surface area and atomic-scale features (step/defect sites) introduced during the growth of nanoprisms are thought to play a significant role in enhancing the sensing properties of the Au nanoprisms toward Hg vapor. The sensors are shown to have excellent Hg sensing capabilities in the concentration range of 0.123–1.27 ppmv (1.02–10.55 mg m − 3), with a detection limit of 2.4 ppbv (0.02 mg m − 3) toward Hg vapor when operating at 28 °C, and 17 ppbv (0.15 mg m − 3) at 89 °C, making them potentially useful for air monitoring applications or for monitoring the efficiency of Hg emission control systems in industries such as mining and waste incineration. The developed sensors exhibited excellent reversible behavior (sensor recovery) within 1 h periods, and crucially were also observed to have high selectivity toward Hg vapor in the presence of ethanol, ammonia and humidity, and excellent long-term stability over a 33 day operating period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by 'directed assembly' methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)(6)(3+) is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)(6)(3+) complex to be reduced to Ru(NH3)(6)(2+) which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within this work, a particle-polymer surface system is studied with respect to the particle-surface interactions. The latter are governed by micromechanics and are an important aspect for a wide range of industrial applications. Here, a new methodology is developed for understanding the adhesion process and measure the relevant forces, based on the quartz crystal microbalance, QCM. rnThe potential of the QCM technique for studying particle-surface interactions and reflect the adhesion process is evaluated by carrying out experiments with a custom-made setup, consisting of the QCM with a 160 nm thick film of polystyrene (PS) spin-coated onto the quartz and of glass particles, of different diameters (5-20µm), deposited onto the polymer surface. Shifts in the QCM resonance frequency are monitored as a function of the oscillation amplitude. The induced frequency shifts of the 3rd overtone are found to decrease or increase, depending on the particle-surface coupling type and the applied oscillation (frequency and amplitude). For strong coupling the 3rd harmonic decreased, corresponding to an “added mass” on the quartz surface. However, positive frequency shifts are observed in some cases and are attributed to weak-coupling between particle and surface. Higher overtones, i.e. the 5th and 7th, were utilized in order to derive additional information about the interactions taking place. For small particles, the shift for specific overtones can increase after annealing, while for large particle diameters annealing causes a negative frequency shift. The lower overtones correspond to a generally strong-coupling regime with mainly negative frequency shifts observed, while the 7th appears to be sensitive to the contact break-down and the recorded shifts are positive.rnDuring oscillation, the motion of the particles and the induced frequency shift of the QCM are governed by a balance between inertial forces and contact forces. The adherence of the particles can be increased by annealing the PS film at 150°C, which led to the formation of a PS meniscus. For the interpretation, the Hertz, Johnson-Kendall-Roberts, Derjaguin-Müller-Toporov and the Mindlin theory of partial slip are considered. The Mindlin approach is utilized to describe partial slip. When partial slip takes place induced by an oscillating load, a part of the contact ruptures. This results in a decrease of the effective contact stiffness. Additionally, there are long-term memory effects due to the consolidation which along with the QCM vibrations induce a coupling increase. However, the latter can also break the contact, lead to detachment and even surface damage and deformation due to inertia. For strong coupling the particles appear to move with the vibrations and simply act as added effective mass leading to a decrease of the resonance frequency, in agreement with the Sauerbrey equation that is commonly used to calculate the added mass on a QCM). When the system enters the weak-coupling regime the particles are not able to follow the fast movement of the QCM surface. Hence, they effectively act as adding a “spring” with an additional coupling constant and increase the resonance frequency. The frequency shift, however, is not a unique function of the coupling constant. Furthermore, the critical oscillation amplitude is determined, above which particle detach. No movement is detected at much lower amplitudes, while for intermediate values, lateral particle displacement is observed. rnIn order to validate the QCM results and study the particle effects on the surface, atomic force microscopy, AFM, is additionally utilized, to image surfaces and measure surface forces. By studying the surface of the polymer film after excitation and particle removal, AFM imaging helped in detecting three different meniscus types for the contact area: the “full contact”, the “asymmetrical” and a third one including a “homocentric smaller meniscus”. The different meniscus forms result in varying bond intensity between particles and polymer film, which could explain the deviation between number of particles per surface area measured by imaging and the values provided by the QCM - frequency shift analysis. The asymmetric and the homocentric contact types are suggested to be responsible for the positive frequency shifts observed for all three measured overtones, i.e. for the weak-coupling regime, while the “full contact” type resulted in a negative frequency shift, by effectively contributing to the mass increase of the quartz..rnThe interplay between inertia and contact forces for the particle-surface system leads to strong- or weak-coupling, with the particle affecting in three mentioned ways the polymer surface. This is manifested in the frequency shifts of the QCM system harmonics which are used to differentiate between the two interaction types and reflect the overall state of adhesion for particles of different size.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2010 there has again been an increase in the number of papers published involving piezoelectric acoustic sensors, or quartz crystal microbalances (QCM), when compared to the last period reviewed 2006-2009. The average number of QCM publications per annum was 124 in the period 2001-2005, 223 in the period 2006-9, and 273 in 2010. There are trends towards increasing use of QCM in the study of protein adsorption to surfaces (93% increase), homeostasis (67% increase), protein-protein interactions (40% increase), and carbohydrates (43% increase). New commercial systems have been released that are driving the uptake of the technology for characterisation of binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights theoretical and practical aspects of the principals that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells, and membrane interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of the Quartz Crystal Microbalance (QCM) for biochemical sensing is well known. However, utilizing the nonlinear response of the QCM at elevated amplitudes has received sporadic attention. This study presents results for QCM-analyte interaction that provide insight into the nonlinear dynamics of the QCM with attached analyte. In particular, interactions of the QCM with polystyrene microbeads physisorbed via self-assembled monolayer (SAM) were studied through experiments and modelling. It was found that the response of the QCM coupled to these surface adsorbents is anharmonic even at low oscillation amplitudes and that the nonlinear signals from such interactions are much higher than those for bare quartz. Therefore, these signals can potentially be used as sensitive signatures of adsorbents and their kinetics on the surface. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mica, as a bridge of the study for combining between quartz crystal microbalance (QCM) and atomic force microscope (AFM), was successfully modified onto the piezoelectric quartz crystal (PQC). This mica-modified piezoelectric quartz crystal (mica-PQC) can be stably oscillated with a shift frequency of +/-1 Hz per half an hour in air. Using this mica-PQC, the processes of DNA adsorbed onto the mica surface were studied in liquid phase. The results show that a bivalent cation, such as Mn2+, can be used as an ionic bridge to immobilize DNA on mica surface. The image of DNA on the mica surface was also obtained by AFM. Mica-PQC gives the possibility of a combination between QCM and AFM in situ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the cyclic voltammetry and quartz crystal microbalance (QCM), the oxidation process and the electrodeposition behavior were studyied during the electrochemical oxidation of 2-mercaptobenzimidazol in aqueous solution. The E-pH diagram was also gained. These results showed the oxidation reaction was one electron reaction. The results from X-ray photoelectron spectrometry verified that the 2-mercaptobenzimidazol was oxidized to bisbenzimidazoyl disulfide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new kind of inorganic self-assembled monolayer (SAM) was prepared by spontaneous adsorption of polyoxometalate anion, AsMo11VO404-, onto a gold surface from acidic aqueous solution. The adsorption process, structure, and electrochemical properties of the AsMo11VO404- SAM were investigated by quartz crystal microbalance (QCM), electrochemistry, and scanning tunneling microscopy (STM). The QCM data suggested that the self-assembling process could be described in terms of the Langmuir adsorption model, providing the value of the free energy of adsorption at -20 KJ mol(-1). The maximum surface coverage of the AsMo11VO404- SAM on gold surface was determined from the QCM data to be 1.7 x 10(-10) mol cm(-2), corresponding to a close-packed monolayer of AsMo11VO404- anion. The analysis of the voltammograms of the AsMo11VO404- SAM on gold electrode showed three pairs of reversible peaks with an equal surface coverage of 1.78 x 10(-10) mol cm(-2) for each of the peaks, and the value was agreed well with the QCM data. In-situ STM image demonstrated that the AsMo11VO404- SAM was very uniform and no aggregates or multilayer could be observed. Furthermore, the high-resolution STM images revealed that the AsMo11VO404- SAM on Au(lll) surface was composed of square unit cells with a lattice space of 10-11 Angstrom at +0.7 V (vs Ag\AgCl). The value was quite close to the diameter of AsMo11VO404- anion obtained from X-ray crystallographic study. The surface coverage of the AsMo11VO404- SAM on gold electrode estimated from the STM image was around 1.8 x 10(-10) mol cm(-2), which was consistent with the QCM and electrochemical results.