979 resultados para QUANTUM CHEMISTRY AND THERMOCHEMISTRY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A historical perspective is given contrasting challenges and advances in theoretical chemistry at the time the first issue of Theoretical Chemistry Accounts appeared in 1962 and the progress achieved since then as expressed in current state-of-the-art applications in photochemistry and thermochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic and vibrational properties of CO adsorbed on Pt electrodes at different potentials have been studied, by using methods of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations and in situ FTir spectroscopy. Two new models have been developed and verified to be successful: (1) using a "metallic state cluster" to imitate a metal (electrode) surface; and (2) charging the cluster and shifting its Fermi level (e{lunate}) to simulate, according to the relation of -d e{lunate}e dE, quantitatively the variation of the electrode potential (E). It is shown that the binding of PtCO is dominated by the electric charge transfer of dp ? 2p, while that of s ? Pt is less important in this binding. The electron occupancy of the 2p orbital of CO weakens the CO bond and decreases the v. Variation of E mainly influences the charge transfer process of dp ? 2p, but hardly influences that of s ? Pt. A linear potential-dependence of v has been shown and the calculated dv/dE = 35.0 cm V. All results of calculations coincide with the ir experimental data. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nine novel triazole compounds containing ester group were designed and synthesized. Their structures were confirmed by elemental, H-1 NMR and IR analyses, and optimized by means of DFT (Density Functional Theory) method at the B3LYP/6-31G* level. Based on the quantum-chemical calculation results and the Pearson coefficients between FA and quantumchemical parameters, V, LogP, MR and E-HOMO are shown to be the important relative factors which affect FA of the title compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria dels Conjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics es potencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funció densitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps que les distribucions de probabilitat quàntiques

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellulose is the major constituent of most plants of interest as renewable sources of energy and is the most extensively studied form of biomass or biomass constituent. Predicting the mass loss and product yields when cellulose is subjected to increased temperature represents a fundamental problem in the thermal release of biomass energy. Unfortunately, at this time, there is no internally consistent model of cellulose pyrolysis that can organize the varied experimental data now available or provide a guide for additional experiments. Here, we present a model of direct cellulose pyrolysis using a multistage decay scheme that we first presented in the IJQC in 1984. This decay scheme can, with the help of an inverse method of assigning reaction rates, provide a reasonable account of the direct fast pyrolysis yield measurements. The model is suggestive of dissociation states of d-glucose (C6H10O5,), the fundamental cellulose monomer. The model raises the question as to whether quantum chemistry could now provide the dissociation energies for the principal breakup modes of glucose into C-1, C-2, C-3, C-4, and C-5 compounds. These calculations would help in achieving a more fundamental description of volatile generation from cellulose pyrolysis and could serve as a guide for treating hemicellulose and lignin, the other major biomass constituents. Such advances could lead to the development of a predictive science of biomass pyrolysis that would facilitate the design of liquifiers and gasifiers based upon renewable feedstocks. (C) 1998 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Here we present experimental data of different properties for a set of binary mixtures composed of water or alkanols (methanol to butanol) with an ionic liquid (IL), butylpyridinium tetrafluoroborate [bpy][BF4]. Solubility data (xIL,T) are presented for each of the mixtures, including water, which is found to have a small interval of compositions in IL, xIL, with immiscibility. In each case, the upper critical solubility temperature (UCST) is determined and a correlation was observed between the UCST and the nature of the compounds in the mixtures. Miscibility curves establish the composition and temperature intervals where thermodynamic properties of the mixtures, such as enthalpies Hm E and volumes Vm E, can be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diese Dissertation demonstriert und verbessert die Vorhersagekraft der Coupled-Cluster-Theorie im Hinblick auf die hochgenaue Berechnung von Moleküleigenschaften. Die Demonstration erfolgt mittels Extrapolations- und Additivitätstechniken in der Single-Referenz-Coupled-Cluster-Theorie, mit deren Hilfe die Existenz und Struktur von bisher unbekannten Molekülen mit schweren Hauptgruppenelementen vorhergesagt wird. Vor allem am Beispiel von cyclischem SiS_2, einem dreiatomigen Molekül mit 16 Valenzelektronen, wird deutlich, dass die Vorhersagekraft der Theorie sich heutzutage auf Augenhöhe mit dem Experiment befindet: Theoretische Überlegungen initiierten eine experimentelle Suche nach diesem Molekül, was schließlich zu dessen Detektion und Charakterisierung mittels Rotationsspektroskopie führte. Die Vorhersagekraft der Coupled-Cluster-Theorie wird verbessert, indem eine Multireferenz-Coupled-Cluster-Methode für die Berechnung von Spin-Bahn-Aufspaltungen erster Ordnung in 2^Pi-Zuständen entwickelt wird. Der Fokus hierbei liegt auf Mukherjee's Variante der Multireferenz-Coupled-Cluster-Theorie, aber prinzipiell ist das vorgeschlagene Berechnungsschema auf alle Varianten anwendbar. Die erwünschte Genauigkeit beträgt 10 cm^-1. Sie wird mit der neuen Methode erreicht, wenn Ein- und Zweielektroneneffekte und bei schweren Elementen auch skalarrelativistische Effekte berücksichtigt werden. Die Methode eignet sich daher in Kombination mit Coupled-Cluster-basierten Extrapolations-und Additivitätsschemata dafür, hochgenaue thermochemische Daten zu berechnen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH3OO-, CD3OO-, and CH3CH2OO-) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer, gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH3OO, (X) over tilde (2)A"] = 1.161 +/- 0.005 eV, EA[CD3OO, (X) over tilde (2)A"] = 1.154 +/- 0.004 eV, and EA[CH3CH2OO, (X) over tilde (2)A"] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: DeltaE((X) over tilde 2A"-(A) over tilde 2A')[CH3OO] = 0.914 +/- 0.005 eV, DeltaE((X) over tilde (2)A"-(A) over tilde 2A') [CD3OO] = 0.913 +/- 0.004 eV, and DeltaE((X) over tilde (2)A"-(A) over tilde (2)A')[CH3CH2OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube k(FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta (acid)G(298)(CH3OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta (acid)G(298)(CD3OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta (acid)G(298)(CH3CH2OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta H-acid(298)(CH3OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta H-acid(298)(CD3OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta H-acid(298)(CH2CH3OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH298(CH3OO-H) 87.8 +/- 1.0 kcal mol(-1), DH298(CD3OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH298(CH3CH2OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH3OO and CH3CH2OO. Using experimental bond enthalpies, DH298(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta H-f(298)[CH3OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta H-f(298)[CH3CH2OO] = -6.8 +/- 2.3 kcal mol(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.