166 resultados para QUADRICEPS
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Introduction: The human patellar tendon is highly adaptive to changes in habitual loading but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods: Twelve healthy adult males (mean age 34.0+/-12.1 years, height 1.75+/-0.09 m and weight 76.7+/-12.3 kg) free of knee pain participated in the research. A 10-5 MHz linear-array transducer was used to acquire standardised sagittal sonograms of the right patellar tendon immediately prior to and following 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar and transverse Hencky strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent gray-scale profiles. Results: Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P<.05), equating to a transverse strain of -22.5+/-3.4%, and was accompanied by increased tendon echogenicity (P<.05) and decreased entropy (P<.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P<.05) and entropy following exercise (r=0.73, P<.05), while older age was associated with greater entropy of the patellar tendon prior to exercise (r=0.79, P<.05) and a reduced transverse strain response (r=0.61, P<.05) following exercise. Conclusions: This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifest by changes in echotexture and transverse strain in the patellar tendon., (C)2012The American College of Sports Medicine
Resumo:
In this study, we investigated the role of routes and information attainment for the queenless ant species Dinoponera quadriceps foraging efficiency. Two queenless ant colonies were observed in an area of Atlantic secondary Forest at the FLONA-ICMBio of Nisia Floresta, in the state of Rio Grande do Norte, northeastern Brazil, at least once a week. In the first stage of the study, we observed the workers, from leaving until returning to the colony. In the second stage, we introduced a acrylic plate (100 x 30 x 0,8 cm) on a selected entrance of the nest early in the morning before the ants left the nest. All behavioral recordings were done through focal time and all occurence samplings. The recording windows were of 15 minutes with 1 minute interval, and 5 minute intervals between each observation window. Foraging was the main activity when the workers were outside the nest. There was a positive correlation between time outside the nest and distance travelled by the ants. These variables influenced the proportion of resource that was taken to the nest, that is, the bigger its proportion, the longer the time outside and distance travelled during the search. That proportion also influenced the time the worker remained in the nest before a new trip, the bigger the proportion of the item, the shorter was the time in the nest. During all the study, workers showed fidelity to the route and to the sectors in the home range, even when the screen was in the ant´s way, once they deviated and kept the route. The features of foraging concerning time, distance, route and flexibility to go astray by the workers indicate that decisions are made by each individual and are optimal in terms of a cost-benefit relation. The strategy chosen by queenless ants fits the central place foraging and marginal value theorem theories and demonstrate its flexibility to new informations. This indicates that the workers can learn new environmental landmarks to guide their routes
Resumo:
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings: quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60 degrees s(-1) and 180 degrees s(-1). In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180 degrees s(-1) (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180 degrees s(-1) decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electronnyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180 degrees s(-1)), probably as result of peripheral fatigue. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to investigate the effect of fatigue induced by an exhaustive laboratory-based soccer-specific exercise on different hamstrings/quadriceps (H:Q) ratios of soccer players. Twenty-two male professional soccer players (23·1 ± 3·4 year) performed maximal eccentric (ecc) and concentric (con) contractions for knee extensors (KE) and flexors (KF) at 60° s-1 and 180° s-1 to assess conventional (Hcon:Qcon) and functional (Hecc:Qcon) ratios. Additionally, they performed maximal voluntary isometric contraction for KE and KF, from which the maximal muscle strength, rate of force development (RFD) and RFD H:Q strength ratio (RFDH:Q) were extracted. Thereafter, subjects were performed an exhaustive laboratory-based soccer-specific exercise and a posttest similar to the pretest. There was significant reduction in Hcon:Qcon (0·60 ± 0·06 versus 0·58 ± 0·06, P<0·05) and in Hecc:Qcon (1·29 ± 0·2 versus 1·16 ± 0·2, P<0·01) after the soccer-specific exercise. However, no significant difference between Pre and Post exercise conditions was found for RFDH:Q at 0-50 (0·53 ± 0·23 versus 0·57 ± 0·24, P>0·05) and 0-100 ms (0·53 ± 0·17 versus 0·55 ± 0·17, P>0·05). In conclusion, H:Q strength ratios based on peak force values are more affected by fatigue than RFDH:Q obtained during early contraction phase. Thus, fatigue induced by soccer-specific intermittent protocol seems not reduce the potential for knee joint stabilization during the initial phase of voluntary muscle contraction. copy; 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)