939 resultados para Q-operator
Resumo:
2000 Mathematics Subject Classification: 33D15, 33D90, 39A13
Resumo:
We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-known q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity.
On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function
Resumo:
2000 Mathematics Subject Classification: 33D60, 26A33, 33C60
Resumo:
Mathematics Subject Classification: 33D60, 33D90, 26A33
Resumo:
In this paper, we estimate the losses during teleportation processes requiring either two high-Q cavities or a single bimodal cavity. The estimates were carried out using the phenomenological operator approach introduced by de Almeida et al. [Phys. Rev. A 62, 033815 (2000)].
Resumo:
This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.
Resumo:
The object of this thesis is to formulate a basic commutative difference operator theory for functions defined on a basic sequence, and a bibasic commutative difference operator theory for functions defined on a bibasic sequence of points, which can be applied to the solution of basic and bibasic difference equations. in this thesis a brief survey of the work done in this field in the classical case, as well as a review of the development of q~difference equations, q—analytic function theory, bibasic analytic function theory, bianalytic function theory, discrete pseudoanalytic function theory and finally a summary of results of this thesis
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
Es defineix l'expansió general d'operadors com una combinació lineal de projectors i s'exposa la seva aplicació generalitzada al càlcul d'integrals moleculars. Com a exemple numèric, es fa l'aplicació al càlcul d'integrals de repulsió electrònica entre quatre funcions de tipus s centrades en punts diferents, i es mostren tant resultats del càlcul com la definició d'escalat respecte a un valor de referència, que facilitarà el procés d'optimització de l'expansió per uns paràmetres arbitraris. Es donen resultats ajustats al valor exacte
Resumo:
Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process
Resumo:
We show that the BRST charge for the N = 2 superstring system can be written as Q = e(-R)(phi dz/2 pi ib gamma(+)gamma(-))e(R), when b and gamma(+/-) are super-reparametrizations ghosts. This provides a trivial proof of the nilpotence of this operator. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.