995 resultados para Q-factor
Resumo:
Alfven eigenmodes (AE) driven by ion cyclotron resonance heating are usually registered by different diagnostic channels in the hot core plasmas of large tokamaks like JET and ASDEX Upgrade. These AE appear very near to the extremum points of Alfven wave continuum, which is modified by the geodesic effect due to poloidal mode coupling. It is shown that the AE spectrum may be explored as the magnetic spectroscopy (like Alfven cascades by Sharapov et al 2001 Phys. Lett. A 289 127) to determine the q-factor minimum and geodesic frequency at the magnetic axis in standard sawtoothed discharges without reversed shear.
Resumo:
We demonstrate a novel time-resolved Q-factor measurement technique and demonstrate its application in the analysis of optical packet switching systems with high information spectral density. For the first time, we report the time-resolved Q-factor measurement of 42.6 Gbit/s AM-PSK and DQPSK modulated packets, which were generated by a SGDBR laser under wavelength switching. The time dependent degradation of Q-factor performance during the switching transient was analyzed and was found to be correlated with different laser switching characteristics in each case.
Resumo:
The purpose of this study was to better understand the study behaviors and habits of university undergraduate students. It was designed to determine whether undergraduate students could be grouped based on their self-reported study behaviors and if any grouping system could be determined, whether group membership was related to students’ academic achievement. A total of 152 undergraduate students voluntarily participated in the current study by completing the Study Behavior Inventory instrument. All participants were enrolled in fall semester of 2010 at Florida International University. The Q factor analysis technique using principal components extraction and a varimax rotation was used in order to examine the participants in relation to each other and to detect a pattern of intercorrelations among participants based on their self-reported study behaviors. The Q factor analysis yielded a two factor structure representing two distinct student types among participants regarding their study behaviors. The first student type (i.e., Factor 1) describes proactive learners who organize both their study materials and study time well. Type 1 students are labeled “Proactive Learners with Well-Organized Study Behaviors”. The second type (i.e., Factor 2) represents students who are poorly organized as well as being very likely to procrastinate. Type 2 students are labeled Disorganized Procrastinators. Hierarchical linear regression was employed to examine the relationship between student type and academic achievement as measured by current grade point averages (GPAs). The results showed significant differences in GPAs between Type 1 and Type 2 students at the .05 significance level. Furthermore, student type was found to be a significant predictor of academic achievement beyond and above students’ attribute variables including sex, age, major, and enrollment status. The study has several implications for educational researchers, practitioners, and policy makers in terms of improving college students' learning behaviors and outcomes.
Resumo:
We report on generation of harmonic oscillations with frequencies of hundreds of MHz and radio-frequency linewidth of 13 Hz in unidirectional ring laser oscillator. This high stability makes these oscillators a suitable substitute for existing quartz resonators used in high frequency optoelectronics applications.
Resumo:
A systematic method to improve the quality (Q) factor of RF integrated inductors is presented in this paper. The proposed method is based on the layout optimization to minimize the series resistance of the inductor coil, taking into account both ohmic losses, due to conduction currents, and magnetically induced losses, due to eddy currents. The technique is particularly useful when applied to inductors in which the fabrication process includes integration substrate removal. However, it is also applicable to inductors on low-loss substrates. The method optimizes the width of the metal strip for each turn of the inductor coil, leading to a variable strip-width layout. The optimization procedure has been successfully applied to the design of square spiral inductors in a silicon-based multichip-module technology, complemented with silicon micromachining postprocessing. The obtained experimental results corroborate the validity of the proposed method. A Q factor of about 17 have been obtained for a 35-nH inductor at 1.5 GHz, with Q values higher than 40 predicted for a 20-nH inductor working at 3.5 GHz. The latter is up to a 60% better than the best results for a single strip-width inductor working at the same frequency.
Resumo:
Seismic wave dispersion and attenuation studies have become an important tool for lithology and fluid discrimination in hydrocarbon reservoirs. The processes associated to attenuation are complex and are encapsulated in a single quantitative description called quality factor (Q). The present dissertation has the objective of comparing different approaches of Q determination and is divided in two parts. Firstly, we made performance and robustness tests of three different approaches for Q determination in the frequency domain. They are: peak shift, centroid shift and spectral ratio. All these tests were performed in a three-layered model. In the suite of tests performed here, we varied the thickness, Q and inclination of the layers for propagation pulses with central frequency of 30, 40 and 60 Hz. We found that the centroid shift method is produces robust results for the entire suíte of tests. Secondly, we inverted for Q values using the peak and centroid shift methods using an sequential grid search algorithm. In this case, centroid shift method also produced more robust results than the peak shift method, despite being of slower convergence
Resumo:
This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differencebeta - gamma in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35 mum CMOS process and V-DD=3.3 V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a triode-operating OTA is used, the procedure can be extended to other types of transconductor.
Resumo:
This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differenceβ - γ in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35μn CMOS process and VDD=3.3V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a Mode-operating OTA is used, the procedure can be extended to other types of transconductor.
Resumo:
Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius. © 2011 Optical Society of America.
Resumo:
Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius. © 2011 Optical Society of America.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
Multifocal intraocular lenses (MF IOLs) have concentric optical zones with different dioptric power, enabling patients to have good visual acuity at multiple focal points. However, several optical limitations have been attributed to this particular design. The purpose of this study is to access the effect of MF IOLs design on the accuracy of retinal optical coherence tomography (OCT). Cross-sectional study conducted at the Refractive Surgery Department of Central Lisbon Hospital Center. Twenty-three eyes of 15 patients with a diffractive MF IOL and 27 eyes of 15 patients with an aspheric monofocal IOL were included in this study. All patients underwent OCT macular scans using Heidelberg Spectralis®. Macular thickness and volume values and image quality (Q factor) were compared between the two groups. There were no statistically significant differences between both groups regarding macular thickness or volume measurements. Retinal OCT image quality was significantly lower in the MF IOL group (p < 0.01). MF IOLs are associated with a significant decrease in OCT image quality. However, this fact does not seem to compromise the accuracy of spectral domain OCT retinal measurements.
Resumo:
Normaalisti radiovastaanottimet on luokiteltavissa suoriin vastaanottimiin ja superheterodynevastaanottimiin. Jälkimmäistä nimitetään tavallisesti supervastaanottimeksi. Molemman vastaanottimen oleellisiin osiin kuuluu antennin virityspiiri, supervastaanottimelle lisäksi paikallisoskillaattorin virityspiiri, mikä pitää virittää antennipiirin kanssa samanaikaisesti. Pienillä taajuuksilla, taajuudet luokassa kilo-Hertzejä tai pienemmillä, on antennipiirin viritys resonanssipiirin ominaisuuksista johtuen sitä kapeammalla kaistalla ja sitä hitaampaa mitä pienemmällä taajuudella vastaanotto tapahtuu. Lisäksi virityspiiri hyvyysluku Q on vaikea saada sopivaksi, mikäli viritys on muuten käytännöllinen, säädettävä resonanssipiiri. Vaadittaessa kiinteätaajuista viritystä on käytännöllistä hyödyntää sähkömekaanisia osia, siis keraamisia tai kvartsikiteitä. Koska kiteitten ja korkean hyvyysluvun piirin värähtely jatkuu useita värähtelyjaksoja ennen saapuneitten värähtelyjen sammumista, kestää myös kauan aikaa, ennen kuin värähtely piirissä on loppu. Pienitaajuinen resonanssipiiri saavuttaa maksimivirtansa hitaasti, jos hyvyysluku on iso, kun piiri alkaa johtaa resonanssitaajuista virtaa. Tässä työssä pyritään vastaanotinjärjestelyyn ongelmallisen, pientaajuisen virityspiirin käytön välttämiseksi. Toisena tavoitteena on saada aikaan vastaanotto siten, että tietty pienitaajuinen radiotaajuusalue voidaan kokonaisuudessaan vastaanottaa jatkuva-aikaisesti, ilman antennipiirin jatkuvaa virittämistä erillisille taajuuksille. Laaditaan kytkentä, joka mitoitetaan, simuloidaan ja mitataan.