968 resultados para Pulsed lasers
Resumo:
A simple technique for the measurement of the beam shape parameters of pulsed lasers, with just a single pulse of the laser is described. It involves the use of several beam dividers inclined at very small angles to the beam axis, reflecting the beam back to a screen or a phosphor placed near the exit of the laser. The reflected images are then photographed by a camera to yield the beam parameters.
Resumo:
The conventional technology for generating ultrashort pulses relies on soliton-like operation based mode-locking. In this regime, the pulse duration is limited by nonlinear optical effects[1]. One method to mitigate these effects is to alternate segments of normal and anomalous group velocity dispersion (GVD) fiber[1]. This configuration is known as dispersion-managed soliton design. It decreases the nonlinear optical effects and reduces the pulse duration[1]. © 2011 IEEE.
Resumo:
Despite significant improvements in their properties as emitters, colloidal quantum dots have not had much success in emerging as suitable materials for laser applications. Gain in most colloidal systems is short lived, and needs to compete with biexcitonic decay. This has necessitated the use of short pulsed lasers to pump quantum dots to thresholds needed for amplified spontaneous emission or lasing. Continuous wave pumping of gain that is possible in some inorganic phosphors has therefore remained a very distant possibility for quantum dots. Here, we demonstrate that trilayer heterostructures could provide optimal conditions for demonstration of continuous wave lasing in colloidal materials. The design considerations for these materials are discussed in terms of a kinetic model. The electronic structure of the proposed dot architectures is modeled within effective mass theory.
Resumo:
As an emerging optical material, graphene’s ultrafast dynamics are often probed using pulsed lasers yet the region in which optical damage takes place is largely uncharted. Here, femtosecond laser pulses induced localized damage in single-layer graphene on sapphire. Raman spatial mapping, SEM, and AFM microscopy quantified the damage. The resulting size of the damaged area has a linear correlation with the optical fluence. These results demonstrate local modification of sp2-carbon bonding structures with optical pulse fluences as low as 14 mJ/cm2, an order-of-magnitude lower than measured and theoretical ablation thresholds.
Resumo:
Cascade transitions of rare earth ions involved in infrared host fiber provide the potential to generate dual or multiple wavelength lasing at mid-infrared region. In addition, the fast development of saturable absorber (SA) towards the long wavelengths motivates the realization of passively switched mid-infrared pulsed lasers. In this work, by combing the above two techniques, a new phenomenon of passively Q-switched ~3 μm and gain-switched ~2 μm pulses in a shared cavity was demonstrated with a Ho3+-doped fluoride fiber and a specifically designed semiconductor saturable absorber (SESAM) as the SA. The repetition rate of ~2 μm pulses can be tuned between half and same as that of ~3 μm pulses by changing the pump power. The proposed method here will add new capabilities and more flexibility for generating mid-infrared multiple wavelength pulses simultaneously that has important potential applications for laser surgery, material processing, laser radar, and free-space communications, and other areas.
Resumo:
By employing a continuous-wave (CW) Ti:sapphire tunable laser as a pumping source and a Cr4+:YAG single crystal as the saturable absorber (SA), a passively Q-switched Nd:YAG ceramic laser has been demonstrated at room temperature. With an absorbed pumping power of 541 mW at 808 nm, an average output power of 61 mW at 1064 nm has been obtained with 3.5 mu J pulse energy, 15 ns pulse width and 18.18 kHz repetition rate, and the corresponding slope-efficiency is 15%. The relationships between the pulse width, repetition rate, average output power, pulse energy, and peak power on the absorbed pumping power for different initial transmission of the Cr4+:YAG SA are discussed separately. The Nd:YAG ceramic is one of the most promising laser materials for compact, efficient, all-solid-state pulsed lasers.
Resumo:
根据热传导原理,建立了脉冲激光晶化非晶硅薄膜的理论模型。运用有限差分方法研究了不同激光波长、能量密度等因素对薄膜温度变化及相变过程的影响。计算了不同波长激光器对厚度500nm非晶硅晶化的阈值能量密度。结果发现,准分子晶化的阈值能量密度最低,但是在同样的能量密度下,熔融深度却不及使用更长波长的激光器。计算并分析了升高衬底温度对结晶速度和晶粒尺寸的影响,模拟结果较好地验证了实验结论和规律。
Resumo:
An efficient diode-pumped laser was demonstrated by using an ytterbium-doped laser crystal, Yb:Gd2SiO5 (Yb:GSO), wherein Yb3+ ions exhibit the largest ground-state splitting among all the ytterbium-doped crystals. The Yb:GSO laser can be operated at a low pumping threshold, and the most efficient laser occurs around 1088 nm since the corresponding emission band has the largest emission cross section and the lowest thermal population. A slope efficiency of 75% was demonstrated for a continuous-wave Yb:GSO laser at 1094 nm, and self-pulsed lasers were achieved within the tunable range of 1091-1105 nm, which are the longest laser wavelengths achieved for Yb3+ lasers. (c) 2006 American Institute of Physics.
Resumo:
Femtosecond pulsed lasers have been widely used for materials microprocessing. Due to their ultrashort pulse width and ultrahigh light intensity, the process is generally characterized by the nonthermal diffusion process. We observed various induced microstructures such as refractive-index-changed structures, color center defects, microvoids and microcracks in transparent materials (e.g., glasses after the femtosecond laser irradiation), and discussed the possible applications of the microstructures in the fabrication of various micro optical devices [e.g., optical waveguides, microgratings, microlenses, fiber attenuators, and three-dimensional (3D) optical memory]. In this paper, we review our recent research developments on single femtosecond-laser-induced nanostructures. We introduce the space-selective valence state manipulation of active ions, precipitation and control of metal nanoparticles and light polarization-dependent permanent nanostructures, and discuss the mechanisms and possible applications of the observed phenomena.
Resumo:
We report a 1.5-mu m InGaAs/GaAs quantum well laser diode grown by molecular beam epitaxy on InGaAs metamorphic buffers. At 150 K, for a 1500 x 10 mu m(2) ridge waveguide laser, the lasing wavelength is centred at 1.508 mu m and the threshold current density is 667 A/cm(2) under pulsed operation. The pulsed lasers can operate up to 286 K.
Resumo:
Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms(1). This process is usually treated as a rapid succession of isolated events, in which the states of the remaining electrons are neglected(2). Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly polarized radiation(3). In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage 'shake-up' reaction(4). Here we report a unique combination of experimental techniques(5-8) that allows us to accurately measure the tunnel ionization probability for argon exposed to 50-fs laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry(7,8), equivalent to a homogenous electric field. Furthermore, circularly polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up(9). From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond extreme-ultraviolet-radiation sources(10). Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in vivo cells and nanoscale extreme-ultraviolet lithography.
Resumo:
The infrared-to-visible frequency upconversion was investigated in Er 3+-doped Ga10Ge25S65 glass and in the transparent glass-ceramic obtained by heat-treatment of the glass above its glass-transition temperature. Continuous-wave and pulsed lasers operating at 980 nm and 1480 nm were used as excitation sources. The green (2H 11/2 → 4I15/2; 4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) photoluminescence (PL) signals due to the Er3+ ions were characterized. The PL decay times were influenced by energy transfer among Er3+ ions, by cross-relaxation processes and by energy transfer from the Er3+ ions to the host material. The PL from the Er3+ ions hosted in the crystalline phase was distinguished only when the glass-ceramic was excited by the 1480 nm pulsed laser. The excitation pathways responsible for the green and red PL bands are discussed to explain the differences between the spectra observed under continuous-wave and pulsed excitation. © 2013 American Institute of Physics.
Resumo:
One of the clinical limitations of the photodynamic therapy (PDT) is the reduced light penetration into biological tissues. Pulsed lasers may present advantages concerning photodynamic response when compared to continuous wave (CW) lasers operating under the same average power conditions. The aim of this study was to investigate PDT-induced response when using femtosecond laser (FSL) and a first-generation photosensitizer (Photogem) to evaluate the induced depth of necrosis. The in vitro photodegradation of the sensitizer was monitored during illumination either with CWor an FSL as an indirect measurement of the PDT response. Healthy liver of Wistar rats was used to evaluate the tissue response. The photosensitizer was endovenously injected and 30 min after, an energy dose of 150 Jcm-2 was delivered to the liver surface. We observed that the photodegradation rate evaluated via fluorescence spectroscopy was higher for the FSL illumination. The FSL-PDT produced a necrosis nearly twice as deep when compared to the CW-PDT. An increase of the tissue temperature during the application was measured and was not higher than 2.5 °C for the CW laser and not higher than 4.5 °C for the pulsed laser. FSL should be considered as an alternative in PDT applications for improving the results in the treatment of bulky tumors where higher light penetration is required.