861 resultados para Prototype Selection
Resumo:
Prototype Selection (PS) algorithms allow a faster Nearest Neighbor classification by keeping only the most profitable prototypes of the training set. In turn, these schemes typically lower the performance accuracy. In this work a new strategy for multi-label classifications tasks is proposed to solve this accuracy drop without the need of using all the training set. For that, given a new instance, the PS algorithm is used as a fast recommender system which retrieves the most likely classes. Then, the actual classification is performed only considering the prototypes from the initial training set belonging to the suggested classes. Results show that this strategy provides a large set of trade-off solutions which fills the gap between PS-based classification efficiency and conventional kNN accuracy. Furthermore, this scheme is not only able to, at best, reach the performance of conventional kNN with barely a third of distances computed, but it does also outperform the latter in noisy scenarios, proving to be a much more robust approach.
Resumo:
In the current Information Age, data production and processing demands are ever increasing. This has motivated the appearance of large-scale distributed information. This phenomenon also applies to Pattern Recognition so that classic and common algorithms, such as the k-Nearest Neighbour, are unable to be used. To improve the efficiency of this classifier, Prototype Selection (PS) strategies can be used. Nevertheless, current PS algorithms were not designed to deal with distributed data, and their performance is therefore unknown under these conditions. This work is devoted to carrying out an experimental study on a simulated framework in which PS strategies can be compared under classical conditions as well as those expected in distributed scenarios. Our results report a general behaviour that is degraded as conditions approach to more realistic scenarios. However, our experiments also show that some methods are able to achieve a fairly similar performance to that of the non-distributed scenario. Thus, although there is a clear need for developing specific PS methodologies and algorithms for tackling these situations, those that reported a higher robustness against such conditions may be good candidates from which to start.
Resumo:
In this paper we propose a prototype size selection method for a set of sample graphs. Our first contribution is to show how approximate set coding can be extended from the vector to graph domain. With this framework to hand we show how prototype selection can be posed as optimizing the mutual information between two partitioned sets of sample graphs. We show how the resulting method can be used for prototype graph size selection. In our experiments, we apply our method to a real-world dataset and investigate its performance on prototype size selection tasks. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.
Resumo:
This paper presents the current state and development of a prototype web-GIS (Geographic Information System) decision support platform intended for application in natural hazards and risk management, mainly for floods and landslides. This web platform uses open-source geospatial software and technologies, particularly the Boundless (formerly OpenGeo) framework and its client side software development kit (SDK). The main purpose of the platform is to assist the experts and stakeholders in the decision-making process for evaluation and selection of different risk management strategies through an interactive participation approach, integrating web-GIS interface with decision support tool based on a compromise programming approach. The access rights and functionality of the platform are varied depending on the roles and responsibilities of stakeholders in managing the risk. The application of the prototype platform is demonstrated based on an example case study site: Malborghetto Valbruna municipality of North-Eastern Italy where flash floods and landslides are frequent with major events having occurred in 2003. The preliminary feedback collected from the stakeholders in the region is discussed to understand the perspectives of stakeholders on the proposed prototype platform.
Resumo:
The survival of organisations, especially SMEs, depends, to the greatest extent, on those who supply them with the required material input. This is because if the supplier fails to deliver the right materials at the right time and place, and at the right price, then the recipient organisation is bound to fail in its obligations to satisfy the needs of its customers, and to stay in business. Hence, the task of choosing a supplier(s) from a list of vendors, that an organisation will trust with its very existence, is not an easy one. This project investigated how purchasing personnel in organisations solve the problem of vendor selection. The investigation went further to ascertain whether an Expert Systems model could be developed and used as a plausible solution to the problem. An extensive literature review indicated that very scanty research has been conducted in the area of Expert Systems for Vendor Selection, whereas many research theories in expert systems and in purchasing and supply management chain, respectively, had been reported. A survey questionnaire was designed and circulated to people in the industries who actually perform the vendor selection tasks. Analysis of the collected data confirmed the various factors which are considered during the selection process, and established the order in which those factors are ranked. Five of the factors, namely, Production Methods Used, Vendors Financial Background, Manufacturing Capacity, Size of Vendor Organisations, and Suppliers Position in the Industry; appeared to have similar patterns in the way organisations ranked them. These patterns suggested that the bigger the organisation, the more importantly they regarded the above factors. Further investigations revealed that respondents agreed that the most important factors were: Product Quality, Product Price and Delivery Date. The most apparent pattern was observed for the Vendors Financial Background. This generated curiosity which led to the design and development of a prototype expert system for assessing the financial profile of a potential supplier(s). This prototype was called ESfNS. It determines whether a prospective supplier(s) has good financial background or not. ESNS was tested by the potential users who then confirmed that expert systems have great prospects and commercial viability in the domain for solving vendor selection problems.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.
Resumo:
A wide range of metrology processes are involved in the manufacture of large products. In addition to the traditional tool-setting and product-verification operations, increasingly flexible metrology-enabled automation is also being used. Faced with many possible measurement problems and a very large number of metrology instruments employing diverse technologies, the selection of the appropriate instrument for a given task can be highly complex. Also, as metrology has become a key manufacturing process, it should be considered in the early stages of design, and there is currently very little research to support this. This paper provides an overview of the important selection criteria for typical measurement processes and presents some novel selection strategies. Metrics that can be used to assess measurability are also discussed. A prototype instrument selection and measurability analysis application is also presented, with discussion of how this can be used as the basis for development of a more sophisticated measurement planning tool. © 2010 Authors.
Resumo:
Metrology processes used in the manufacture of large products include tool setting, product verification and flexible metrology enabled automation. The range of applications and instruments available makes the selection of the appropriate instrument for a given task highly complex. Since metrology is a key manufacturing process it should be considered in the early stages of design. This paper provides an overview of the important selection criteria for typical measurement processes and presents some novel selection strategies. Metrics which can be used to assess measurability are also discussed. A prototype instrument selection and measurability analysis application is presented with discussion of how this can be used as the basis for development of a more sophisticated measurement planning tool. © Springer-Verlag Berlin Heidelberg 2010.