956 resultados para Protein Alpha-subunits
Resumo:
A number of lines of evidence suggest that cross-talk exists between the cellular signal transduction pathways involving tyrosine phosphorylation catalyzed by members of the pp60c-src kinase family and those mediated by guanine nucleotide regulatory proteins (G proteins). In this study, we explore the possibility that direct interactions between pp60c-src and G proteins may occur with functional consequences. Preparations of pp60c-src isolated by immunoprecipitation phosphorylate on tyrosine residues the purified G-protein alpha subunits (G alpha) of several heterotrimeric G proteins. Phosphorylation is highly dependent on G-protein conformation, and G alpha(GDP) uncomplexed by beta gamma subunits appears to be the preferred substrate. In functional studies, phosphorylation of stimulatory G alpha (G alpha s) modestly increases the rate of binding of guanosine 5'-[gamma-[35S]thio]triphosphate to Gs as well as the receptor-stimulated steady-state rate of GTP hydrolysis by Gs. Heterotrimeric G proteins may represent a previously unappreciated class of potential substrates for pp60c-src.
Resumo:
Glycosylphosphatidylinositol (GPI)-anchored proteins are nonmembrane spanning cell surface proteins that have been demonstrated to be signal transduction molecules. Because these proteins do not extend into the cytoplasm, the mechanism by which cross-linking of these molecules leads to intracellular signal transduction events is obscure. Previous analysis has indicated that these proteins are associated with src family member tyrosine kinases; however, the role this interaction plays in the generation of intracellular signals is not clear. Here we show that GPI-anchored proteins are associated with alpha subunits of heterotrimeric GTP binding proteins (G proteins) in both human and murine lymphocytes. When the GPI-anchored proteins CD59, CD48, and Thy-1 were immunoprecipitated from various cell lines or freshly isolated lymphocytes, all were found to be associated with a 41-kDa phosphoprotein that we have identified, by using specific antisera, as a mixture of tyrosine phosphorylated G protein alpha subunits: a small amount of Gialpha1, and substantial amounts of Gialpha2 and Gialpha3. GTP binding assays performed with immunoprecipitations of CD59 indicated that there was GTP-binding activity associated with this molecule. Thus, we have shown by both immunochemical and functional criteria that GPI-anchored proteins are physically associated with G proteins. These experiments suggest a potential role of G proteins in the transduction of signals generated by GPI-anchored molecules expressed on lymphocytes of both mouse and human.
Resumo:
A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.
Resumo:
Meprins are members of the astacin family of metalloproteases expressed in epithelial tissues, intestinal leukocytes and certain cancer cells. In mammals, there are two homologous subunits, which form complex glycosylated disulfide-bonded homo- and heterooligomers. Both human meprin alpha and meprin beta cleave several basement membrane components, suggesting a role in epithelial differentiation and cell migration. There is also evidence that meprin beta is involved in immune defence owing to its capability of activating interleukin-1beta and the diminished mobility of intestinal leukocytes in meprin beta-knockout mice. Here we show for the first time by reverse transcription PCR, immunoblotting and immunofluorescence analyses that meprins are expressed not only in mammals, but also in the zebrafish Danio rerio. In contrast to the human, mouse and rat enzymes, zebrafish meprins are encoded by three genes, corresponding to two homologous alpha subunits and one beta subunit. Observations at both the mRNA and protein level indicate a broad distribution of meprins in zebrafish. However, there are strikingly different expression patterns of the three subunits, which is consistent with meprin expression in mammals. Hence, D. rerio appears to be a suitable model to gain insight into the basic physiological functions of meprin metalloproteases.
Resumo:
The inhibition of alpha i2-/- mouse cardiac isoproterenol-stimulated adenylyl cyclase (AC; EC 4.6.1.1) activity by carbachol and that of alpha i2-/- adipocyte AC by phenylisopropyladenosine (PIA), prostaglandin E2, and nicotinic acid were partially, but not completely, inhibited. While the inhibition of cardiac AC was affected in all alpha i2-/- animals tested, only 50% of the alpha i2-/- animals showed an impaired inhibition of adipocyte AC, indicative of a partial penetrance of this phenotype. In agreement with previous results, the data show that Gi2 mediates hormonal inhibition of AC and that Gi3 and/or Gi1 is capable of doing the same but with a lower efficacy. Disruption of the alpha i2 gene affected about equally the actions of all the receptors studied, indicating that none of them exhibits a striking specificity for one type of Gi over another and that receptors are likely to he selective rather than specific in their interaction with functionally homologous G proteins (e.g., Gi1, Gi2, Gi3). Western analysis of G protein subunit levels in simian virus 40-transformed primary embryonic fibroblasts from alpha i2+/+ and alpha i2-/- animals showed that alpha i2 accounts for about 50% of the immunopositive G protein alpha subunits and that loss of the alpha i2 is accompanied by a parallel reduction in G beta 35 and G beta 36 subunits and by a 30-50% increase in alpha i3. This suggests that G beta-gamma levels may be regulated passively through differential rates of turnover in their free vs. trimeric states. The existence of compensatory increase(s) in alpha i subunit expression raises the possibility that the lack of effect of a missing alpha i2 on AC inhibition in adipocytes of some alpha i2-/- animals may be the reflection of a more pronounced compensatory expression of alpha i3 and/or alpha i1.
Resumo:
APC (allophycocyanin) is widely used for fluorescence tagging and may be a promising antioxidant agent for use within the food and pharmaceutical industries. Chromophore attachment to apo-ApcA (apo-APC alpha-subunit without chromophore) can be auto-catalysed both in vitro and in vivo. In the present study, a plasmid containing genes of apo-ApcA and chromophore synthetases (HOI (ferredoxin-dependent haem oxygenase) and PcyA (phycocyanobilin:ferredoxin oxidoreductase)] was constructed and expressed in Escherichia coli. The results show that holo-ApcA (APC alpha-subunit with chromophore) can be synthesized by autocatalysis in E. coli. Recombinant holo-ApcA showed the same spectral and fluorescent properties as PC (phycocyanin) and could serve as a good substitute for native PC for fluorescent tagging. Moreover, recombinant ApcA can inhibit hydroxyl and peroxyl radicals more strongly than holo-ApcA and native APC. The EC50 values were 296.4 +/- 22.4 mu g/ml against hydroxyl radicals and 38.5 +/- 2.6 mu g/ml against peroxyl radicals.
Resumo:
Keloid scars are common benign fibroproliferative reticular dermal lesions with unknown etiology and ill-defined management with high rate of recurrence post surgery. The progression of keloids is characterized by increased deposition of extracellular matrix proteins, invasion into the surrounding healthy skin and inflammation. Fibroblasts are considered to be the key cellular mediators of fibrogenesis in keloid scars. Fibroblast activation protein alpha (FAP-a) and dipeptidyl peptidase IV (DPPIV) are proteases located at the plasma membrane promoting cell invasiveness and tumor growth and have been previously associated with keloid scars. Therefore, in this study we analyzed in further detail the expression of FAP-a in keloid fibroblasts compared to control skin fibroblasts. Dermal fibroblasts were obtained from punch-biopsies from the active margin of four keloids and four control skin samples. Flow cytometry was used to analyze FAP-a expression and the CytoSelect(®) 24-Well Collagen I Cell Invasion Assay was applied to study fibroblast invasion. Secretion of extracellular matrix (ECM) proteins was investigated by multiplexed particle-based flow cytometric assay and enzyme-linked immunosorbent assay. We found an increased expression of FAP-a in keloid fibroblasts compared to control skin fibroblasts (p
Resumo:
Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.
Resumo:
Hippocampal pyramidal cells, receiving domain specific GABAergic inputs, express up to 10 different subunits of the gamma-aminobutyric acid type A (GABAA) receptor, but only 3 different subunits are needed to form a functional pentameric channel. We have tested the hypothesis that some subunits are selectively located at subsets of GABAergic synapses. The alpha 1 subunit has been found in most GABAergic synapses on all postsynaptic domains of pyramidal cells. In contrast, the alpha 2 subunit was located only in a subset of synapses on the somata and dendrites, but in most synapses on axon initial segments innervated by axo-axonic cells. The results demonstrate that molecular specialization in the composition of postsynaptic GABAA receptor subunits parallels GABAergic cell specialization in targeting synapses to a specific domain of postsynaptic cortical neurons.
Resumo:
Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes, but present at a much lower level in preadipocytes, protects the same region between nucleotides -58 and -42 relative to the transcriptional start site. Electrophoretic mobility-shift analysis using nuclear extracts from adipose tissue or 3T3-L1 adipocytes and an oligonucleotide probe corresponding to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C/EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together, these findings implicate C/EBP alpha as a transcriptional activator of the ob gene promoter and identify the functional C/EBP binding site in the promoter.
Resumo:
Proteasomes are located both in the nuclei and in the cytoplasm of eukaryotic cells. Active transport of these complexes through the nuclear pores has been proposed to be mediated by nuclear localization signals (NLS), which have been found in several of the alpha-type proteasomal subunits. We have tested three different putative NLS sequences from human alpha-type proteasomal subunits (Hsc iota, Hsc9, and Hsc3), as well as a putative NLS-type sequence from the archaeon Thermoplasma acidophilum, for their ability to direct non-nuclear proteins to the nucleus. Synthetic peptides containing these putative NLS sequences were generated and conjugated to large fluorescent reporter molecules: allophycocyanin or fluorescein-labeled bovine serum albumin. The conjugates were introduced into digitonin-permeabilized HeLa and 3T3 cells in the presence of cell lysate and ATP, and nuclear import was monitored by fluorescence microscopy. All three putative NLS sequences from human proteasomal subunits were able to direct the reporter molecules to the nucleus in both cell types, although differences in efficiency were observed. Substitution of threonine for the first lysine residue of the eukaryotic NLS motifs inhibited nuclear import completely. Interestingly, the putative NLS sequence found in T. acidophilum was also functional as a nuclear targeting sequence.
Resumo:
We have identified another Drosophila GTP-binding protein (G protein) alpha subunit, dGq alpha-3. Transcripts encoding dGq alpha-3 are derived from alternative splicing of the dGq alpha locus previously shown to encode two visual-system-specific transcripts [Lee, Y.-J., Dobbs, M.B., Verardi, M.L. & Hyde, D.R. (1990) Neuron 5, 889-898]. Immunolocalization studies using dGq alpha-3 isoform-specific antibodies and LacZ fusion genes show that dGq alpha-3 is expressed in chemosensory cells of the olfactory and taste structures, including a subset of olfactory and gustatory neurons, and in cells of the central nervous system, including neurons in the lamina ganglionaris. These data are consistent with a variety of roles for dGq alpha-3, including mediating a subset of olfactory and gustatory responses in Drosophila, and supports the idea that some chemosensory responses use G protein-coupled receptors and the second messenger inositol 1,4,5-trisphosphate.