942 resultados para Protective Antigen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interactions of Mycobacterium tuberculosis with macrophages have long been recognized to be crucial to the pathogenesis of tuberculosis. The role of non-phagocytic cells is less well known. We have discovered a M. tuberculosis surface protein that interacts specifically with non-phagocytic cells, expresses hemagglutination activity and binds to sulfated glycoconjugates. It is therefore called heparin-binding hemagglutinin (HBHA). HBHA-deficient M. tuberculosis mutant strains are significantly impaired in their ability to disseminate from the lungs to other tissues, suggesting that the interaction with non-phagocytic cells, such as pulmonary epithelial cells, may play an important role in the extrapulmonary dissemination of the tubercle bacillus, one of the key steps that may lead to latency. Latently infected human individuals mount a strong T cell response to HBHA, whereas patients with active disease do not, suggesting that HBHA is a good marker for the immunodiagnosis of latent tuberculosis, and that HBHA-specific Th1 responses may contribute to protective immunity against active tuberculosis. Strong HBHA-mediated immuno-protection was shown in mouse challenge models. HBHA is a methylated protein and its antigenicity in latently infected subjects, as well as its protective immunogenicity strongly depends on the methylation pattern of HBHA. In both mice and man, the HBHA-specific IFN-gamma was produced by both the CD4(+) and the CD8(+) T cells. Furthermore, the HBHA-specific CD8(+) T cells expressed bactericidal and cytotoxic activities to mycobacteria-infected macrophages. This latter activity is most likely perforin mediated. Together, these observations strongly support the potential of methylated HBHA as an important component in future, acellular vaccines against tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioinformatic analysis of Group A Streptococcus (GAS) genomes aiming at the identification of new vaccine antigens, revealed the presence of a gene coding for a putative surface-associated protein, named GAS40, inducing protective antibodies in an animal model of sepsis. The aim of our study was to unravel the involvement of GAS40 in cell division processes and to identify the putative interactor. Firstly, bioinformatic analysis showed that gas40 shares homology with ezrA, a gene coding for a negative regulator of Z-ring formation during cell division process. Both scanning and transmission electron microscopy indicated morphological differences between wild-type and the GAS40 knock-out mutant strain, with the latter showing an impaired capacity to divide resulting in the formation of very long chains. Moreover, when the localization of the antigen on the bacterial surface was analyzed, we found that in bacteria grown at exponential phase GAS40 specifically localized at septum, indicating a possible role in cell division. Furthermore, by ELISA and co-sedimentation assays, we found that GAS40 is able to interact with FtsZ, a protein involved in Z-ring formation during cell division process. These data together with the co-localization of GAS40/FtsZ at bacterial septum demonstrated by by confocal microscopy, strongly support the hypothesis for a key role of GAS40 in bacterial cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lethal factor (LF) and edema factor (EF) of anthrax toxin bind by means of their amino-terminal domains to protective antigen (PA) on the surface of toxin-sensitive cells and are translocated to the cytosol, where they act on intracellular targets. Genetically fusing the amino-terminal domain of LF (LFN; residues 1-255) to certain heterologous proteins has been shown to potentiate these proteins for PA-dependent delivery to the cytosol. We report here that short tracts of lysine, arginine, or histidine residues can also potentiate a protein for such PA-dependent delivery. Fusion of these polycationic tracts to the amino terminus of the enzymic A chain of diphtheria toxin (DTA; residues 1-193) enabled it to be translocated to the cytosol by PA and inhibit protein synthesis. The efficiency of translocation was dependent on tract length: (LFN > Lys8 > Lys6 > Lys3). Lys6 was approximately 100-fold more active than Arg6 or His6, whereas Glu6 and (SerSerGly)2 were inactive. Arg6DTA was partially degraded in cell culture, which may explain its low activity relative to that of Lys6DTA. The polycationic tracts may bind to anionic sites at the cell surface (possibly on PA), allowing the fusion proteins to be coendocytosed with PA and delivered to the endosome, where translocation to the cytosol occurs. Excess free LFN blocked the action of LFNDTA, but not of Lys6DTA. This implies that binding to the LF/EF site is not an obligatory step in translocation and suggests that the polycationic tag binds to a different site. Besides elucidating the process of translocation in anthrax toxin, these findings may aid in developing systems to deliver heterologous proteins and peptides to the cytoplasm of mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protective antigen (PA) of anthrax toxin binds to a cell surface receptor, undergoes heptamerization, and binds the enzymatic subunits, the lethal factor (LF) and the edema factor (EF). The resulting complex is then endocytosed. Via mechanisms that depend on the vacuolar ATPase and require membrane insertion of PA, LF and EF are ultimately delivered to the cytoplasm where their targets reside. Here, we show that membrane insertion of PA already occurs in early endosomes, possibly only in the multivesicular regions, but that subsequent delivery of LF to the cytoplasm occurs preferentially later in the endocytic pathway and relies on the dynamics of internal vesicles of multivesicular late endosomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Control of contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), remains an important goal in Africa. Subunit vaccines triggering B and T-cell responses could represent a promising approach. To this aim, the T-cell immunogenicity of four MmmSC lipoproteins (LppA, LppB, LppC and LppQ), present in African strains and able to elicit humoral response, was evaluated. In vitro assays revealed that only LppA was recognized by lymph node lymphocytes taken from three cattle, 3 weeks after MmmSC exposure. Maintenance of the LppA-specific response, relying on CD4 T-cells and IFN gamma production, was then demonstrated 1 year after infection. LppA is thus an important target for the CD4 T-cells generated early after MmmSC infection and persisting in the lymph nodes of recovered cattle. Its role as a protective antigen and ability to in vivo trigger both arms of the host immune response remain to be evaluated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida is the etiologic agent of furunculosis, a frequent and significant disease of fisheries worldwide. The disease is largely controlled by commercial oil adjuvanted vaccines containing bacterins. However, the mechanisms leading to a protective immune response remain poorly understood. The type-three secretion system (T3SS) plays a central role in virulence of A. salmonicida subsp. salmonicida and thus may have an influence on the immune response of the host. The aim of this study was to evaluate the role of the T3SS antigens in mounting a protective immune response against furunculosis. Rainbow trout were intraperitoneally vaccinated in two independent experiments with bacterins prepared from a wild-type A. salmonicida strain and an isogenic strain carrying a deletion in the T3SS (ΔascV). Fish were challenged with the wt strain eight weeks after vaccination. In both trials, the survival rate of trout vaccinated with the ΔascV strain was significantly higher (23-28%) in comparison to the group vaccinated with the wt strain. High-throughput proteomics analysis of whole bacteria showed the ascV deletion in the mutant strain resulted in lower expression of all the components of the T3SS, several of which have a potential immunosuppressive activity. In a third experiment, fish were vaccinated with recombinant AcrV (homologous to the protective antigen LcrV of Yersinia) or S-layer protein VapA (control). AcrV vaccinated fish were not protected against a challenge while fish vaccinated with VapA were partially protected. The presence of T3SS proteins in the vaccine preparations decreased the level of protection against A. salmonicida infection and that AcrV was not a protective antigen. These results challenge the hypothesis that mounting specific antibodies against T3SS proteins should bring better protection to fish and demonstrate that further investigations are needed to better understand the mechanisms underlying effective immune responses against A. salmonicida infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Most individuals infected with Mycobacterium tuberculosis do not develop tuberculosis (TB) and can be regarded as being protected by an appropriate immune response to the infection. The characterization of the immune responses of individuals with latent TB may thus be helpful in the definition of correlates of protection and the development of new vaccine strategies. The highly protective antigen heparin-binding hemagglutinin (HBHA) induces strong interferon (IFN)- gamma responses during latent, but not active, TB. Because of the recently recognized importance of CD8(+) T lymphocytes in anti-TB immunity, we characterized the CD8(+) T lymphocyte responses to HBHA in subjects with latent TB. RESULTS: HBHA-specific CD8(+) T lymphocytes expressed memory cell markers and synthesized HBHA-specific IFN- gamma .They also restricted mycobacterial growth and expressed cytotoxicity by a granule-dependent mechanism. This activity was associated with the intracellular expression of HBHA-induced perforin. Surprisingly, the perforin-producing CD8(+) T lymphocytes were distinct from the IFN- gamma -producing CD8(+) T lymphocytes. CONCLUSION: During latent TB, the HBHA-specific CD8(+) T lymphocyte population expresses all 3 effector functions associated with CD8(+) T lymphocyte-mediated protective immune mechanisms, which supports the notion that HBHA may be protective in humans and suggests that markers of HBHA-specific CD8(+) T lymphocyte responses may be useful in the monitoring of protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthrax is a toxin-mediated disease, the lethal effects of which are initiated by the binding of protective antigen (PA) with one of three reported cell surface toxin receptors (ANTXR). Receptor binding has been shown to influence host susceptibility to the toxins. Despite this crucial role for ANTXR in the outcome of disease, and the reported immunomodulatory consequence of the anthrax toxins during infection, little is known about ANTXR expression on human leucocytes. We characterized the expression levels of ANTXR1 (TEM8) on human leucocytes using flow cytometry. In order to assess the effect of prior toxin exposure on ANTXR1 expression levels, leucocytes from individuals with no known exposure, those exposed to toxin through vaccination and convalescent individuals were analysed. Donors could be defined as either 'low' or 'high' expressers based on the percentage of ANTXR1-positive monocytes detected. Previous exposure to toxins appears to modulate ANTXR1 expression, exposure through active infection being associated with lower receptor expression. A significant correlation between low receptor expression and high anthrax toxin-specific interferon (IFN)-γ responses was observed in previously infected individuals. We propose that there is an attenuation of ANTXR1 expression post-infection which may be a protective mechanism that has evolved to prevent reinfection.