905 resultados para Prosthetic Devices.
Resumo:
This thesis explores the relationship between body and architecture through a metaphorical and literal analysis of prosthetic devices. The thesis questions how the relationship between prosthetics and architecture can inform the design of a building that enables connection, movement and empowerment for its occupants. Driving questions of investigation include: How can a building enable growth, healing and wellbeing? , How can a building embody and reflect human growth and transformation? , and, How can a building enable equivalence between its users? The program of an inpatient prosthetic rehabilitation facility allows for the exploration of these questions and a study for how we can create spaces that influence rehabilitation and growth. Through body and prosthetics analysis the thesis explores what spaces are best for one to grow and develop in and study how concepts, such as connection, movement and empowerment can enable one and enhance one’s quality of life.
Resumo:
Stimulus artifacts inhibit reliable acquisition of biological evoked potentials for several milliseconds if an electrode contact is utilized for both electrical stimulation and recording purposes. This hinders the measurement of evoked short-latency biological responses, which is otherwise elicited by stimulation in implantable prosthetic devices. We present an improved stimulus artifact suppression scheme using two electrode simultaneous stimulation and differential readout using high-gain amplifiers. Substantial reduction of artifact duration has been shown possible through the common-mode rejection property of an instrumentation amplifier for electrode interfaces. The performance of this method depends on good matching of electrode-electrolyte interface properties of the chosen electrode pair. A novel calibration algorithm has been developed that helps in artificial matching of impedance and thereby achieves the required performance in artifact suppression. Stimulus artifact duration has been reduced down to 50 mu s from the stimulation-cum-recording electrodes, which is similar to 6x improvement over the present state of the art. The system is characterized with emulated resistor-capacitor loads and a variety of in-vitro metal electrodes dipped in saline environment. The proposed method is going to be useful for closed-loop electrical stimulation and recording studies, such as bidirectional neural prosthesis of retina, cochlea, brain, and spinal cord.
Resumo:
325 p. El contenido del capítulo 5 "Estructuras sobre implantes dentales" está sujeto a confidencialidad
Resumo:
Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.
Resumo:
Background: Immediate breast reconstruction after mastectomy has increased over the past decade following the unequivocal demonstration of its oncological safety and the availability of reliable methods of reconstruction. Broadly, it is undertaken in the treatment of breast cancer, after prophylactic mastectomy in high-risk patients, and in the management of treatment failure after breast-conserving surgery and radiotherapy. Immediate breast reconstruction can be achieved reliably with a variety of autogenous tissue techniques or prosthetic devices. Careful discussion and evaluation remain vital in choosing the correct technique for the individual patient.
Methods: This review is based primarily on an English language Medline search with secondary references obtained from key articles.
Results and conclusion: Immediate breast reconstruction is a safe and acceptable procedure after mastectomy for cancer; there is no evidence that it has untoward oncological consequences. In the appropriate patient it can be achieved effectively with either prosthetic or autogenous tissue reconstruction. Patient selection is important in order to optimize results, minimize complications and improve quality of life, while simultaneously treating the malignancy. Close cooperation and collaboration between the oncological breast and reconstructive achieve these objectives.
Resumo:
INTRODUCCIÓN. La mediastinitis posterior a cirugía de revascularización miocárdica es una infección infrecuente, pero potencialmente fatal. En la Fundación Cardioinfantil se ha observado una tendencia al incremento de la misma en los últimos años, obligando a un cambio en las medidas de profilaxis antimicrobiana, pasando de cefalosporinas a vancomicina – gentamicina, sin embargo no se conoce aún el impacto de estas medidas. OBJETIVO: Determinar si el cambio de la profilaxis antibiótica en pacientes sometidos a revascularización miocárdica influye en una disminución de la incidencia de mediastinitis durante los años 2012 – 2013. METODOLOGÍA: Estudio de cohortes retrospectivo, evaluando la incidencia de mediastinitis post revascularización miocárdica, en pacientes expuestos a 2 diferentes tipos de profilaxis antimicrobiana (cefalosporinas vs vancomicina-gentamicina). Se describieron los patrones de susceptibilidad y resistencia de los patógenos encontrados en mediastinitis y la mortalidad de esta patología. RESULTADOS: Los patógenos más frecuentemente aislados en la mediastinitis fueron Staphylococcus aureus y Klebsiella pneumoniae, en la mayoría monomicrobiano. Se encontraron patógenos con perfiles de resistencia como betalactamasas de espectro extendido en Gram negativos y resistencia a la meticilina en cocos Gram positivos. El RR de mediastinitis del grupo expuesto a vancomicina-gentamicina respecto al grupo de cefalosporinas fue de 0,9 con IC 95% 0,28 – 3,28. CONCLUSIÓN: la epidemiologia microbiana de la mediastinitis no difiere de la reportada en otras series. La profilaxis antimicrobiana con vancomicina - gentamicina en pacientes sometidos a revascularización miocárdica, no redujo la incidencia de mediastinitis. Se propone regresar a la terapia de profilaxis con cefalosporinas.
Resumo:
Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.
Resumo:
Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The use of prosthetic devices for correction of velopharyngeal insufficiency (VPI) is an alternative treatment for patients with conditions that preclude surgery and for those individuals with a hypofunctional velopharynx (HV) with a poor prognosis for the surgical repair of VPI. Understanding the role and measuring the outcome of prosthetic treatment of velopharyngeal dysfunction requires the use of tools that allow for documenting pre- and post-treatment outcomes. Experimental openings in speech bulbs have been used for simulating VPI in studies documenting changes in aerodynamic, acoustic and kinematics aspects of speech associated with the use of palatal prosthetic devices. The use of nasometry to document changes in speech associated with experimental openings in speech bulbs, however, has not been described in the literature. Objective: This single-subject study investigated nasalance and nasality at the presence of experimental openings drilled through the speech bulb of a patient with HV. Material and Methods: Nasometric recordings of the word "pato" were obtained under 4 velopharyngeal conditions: no-opening (control condition), no speech bulb, speech bulb with a 20 mm(2) opening, and speech bulb with 30 mm(2) opening. Five speech-language pathologists performed auditory-perceptual ratings while the subject read an oral passage under all conditions. Results: Kruskal-Wallis test showed significant difference among conditions (p=0.0002), with Scheffe post hoc test indicating difference from the no-opening condition. Conclusion: The changes in nasalance observed after drilling holes of known sizes in a speech bulb suggest that nasometry reflect changes in transfer of sound energy related to different sizes of velopharyngeal opening.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 degrees C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 degrees C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 10x10(13) and 10x10(16) ions/cm(2). GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 degrees C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 degrees C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective The objective of this article is to present options of rehabilitation with dental implants in two cases of severely atrophic mandibles (<10 mm) after rigid internal fixation of fractures. Patients and method Two patients who sustained fractures in severely atrophic mandibles with less than 10 mm of bone height were treated by open reduction and internal fixation through a transcervical access. Internal fixation was obtained with 2.4-mm locking reconstruction plates. The first patient presented satisfactory bone height at the area between the mental foramens and after 2 years, received flapless guided implants in the anterior mandible and an immediate protocol prosthesis. The second patient received a tent pole iliac crest autogenous graft after 2 years of fracture treatment and immediate implants. After 5 months, a protocol prosthesis was installed in the second patient. Results In both cases, the internal fixation followed AO principles for load-bearing osteosynthesis. Both prosthetic devices were Branemark protocol prosthesis. The mandibular reconstruction plates were not removed. Both patients are rehabilitated without complications and satisfied with esthetic and functional results. Conclusion With the current techniques of internal fixation, grafting, and guided implants, the treatment of atrophic mandible fractures can achieve very good results, which were previously not possible.
Resumo:
The aim of this thesis was to describe the development of motion analysis protocols for applications on upper and lower limb extremities, by using inertial sensors-based systems. Inertial sensors-based systems are relatively recent. Knowledge and development of methods and algorithms for the use of such systems for clinical purposes is therefore limited if compared with stereophotogrammetry. However, their advantages in terms of low cost, portability, small size, are a valid reason to follow this direction. When developing motion analysis protocols based on inertial sensors, attention must be given to several aspects, like the accuracy of inertial sensors-based systems and their reliability. The need to develop specific algorithms/methods and software for using these systems for specific applications, is as much important as the development of motion analysis protocols based on them. For this reason, the goal of the 3-years research project described in this thesis was achieved first of all trying to correctly design the protocols based on inertial sensors, in terms of exploring and developing which features were suitable for the specific application of the protocols. The use of optoelectronic systems was necessary because they provided a gold standard and accurate measurement, which was used as a reference for the validation of the protocols based on inertial sensors. The protocols described in this thesis can be particularly helpful for rehabilitation centers in which the high cost of instrumentation or the limited working areas do not allow the use of stereophotogrammetry. Moreover, many applications requiring upper and lower limb motion analysis to be performed outside the laboratories will benefit from these protocols, for example performing gait analysis along the corridors. Out of the buildings, the condition of steady-state walking or the behavior of the prosthetic devices when encountering slopes or obstacles during walking can also be assessed. The application of inertial sensors on lower limb amputees presents conditions which are challenging for magnetometer-based systems, due to ferromagnetic material commonly adopted for the construction of idraulic components or motors. INAIL Prostheses Centre stimulated and, together with Xsens Technologies B.V. supported the development of additional methods for improving the accuracy of MTx in measuring the 3D kinematics for lower limb prostheses, with the results provided in this thesis. In the author’s opinion, this thesis and the motion analysis protocols based on inertial sensors here described, are a demonstration of how a strict collaboration between the industry, the clinical centers, the research laboratories, can improve the knowledge, exchange know-how, with the common goal to develop new application-oriented systems.