979 resultados para Prospectus forecasts
Resumo:
Commencing 13 March 2000, the Corporate Law Economic Reform Program Act 1999 (Cth) introduced changes to the regulation of corporate fundraising in Australia. In particular, it effected a reduction in the litigation risk associated with initial public offering prospectus disclosure. We find that the change is associated with a reduction in forecast frequency and an increase in forecast value relevance, but not with forecast error or bias. These results confirm previous findings that changes in litigation risk affect the level but not the quality of disclosure. They also suggest that the reforms' objectives of reducing fundraising costs while improving investor protection, have been achieved.
Resumo:
The use of long-term forecasts of pest pressure is central to better pest management. We relate the Southern Oscillation Index (SOI) and the Sea Surface Temperature (SST) to long-term light-trap catches of the two key moth pests of Australian agriculture, Helicoverpa punctigera (Wallengren) and H. armigera (Hubner), at Narrabri, New South Wales over 11 years, and for H. punctigera only at Turretfield, South Australia over 22 years. At Narrabri, the size of the first spring generation of both species was significantly correlated with the SOI in certain months, sometimes up to 15 months before the date of trapping. Differences in the SOI and SST between significant months were used to build composite variables in multiple regressions which gave fitted values of the trap catches to less than 25% of the observed values. The regressions suggested that useful forecasts of both species could be made 6-15 months ahead. The influence of the two weather variables on trap catches of H. punctigera at Turretfield were not as strong as at Narrabri, probably because the SOI was not as strongly related to rainfall in southern Australia as it is in eastern Australia. The best fits were again given by multiple regressions with SOI plus SST variables, to within 40% of the observed values. The reliability of both variables as predictors of moth numbers may be limited by the lack of stability in the SOI-rainfall correlation over the historical record. As no other data set is available to test the regressions, they can only be tested by future use. The use of long-term forecasts in pest management is discussed, and preliminary analyses of other long sets of insect numbers suggest that the Southern Oscillation Index may be a useful predictor of insect numbers in other parts of the world.
Resumo:
The value of a seasonal forecasting system based on phases of the Southern Oscillation was estimated for a representative dryland wheat grower in the vicinity of Goondiwindi. In particular the effects on this estimate of risk attitude and planting conditions were examined. A recursive stochastic programming approach was used to identify the grower's utility-maximising action set in the event of each of the climate patterns over the period 1894-1991 recurring In the imminent season. The approach was repeated with and without use of the forecasts. The choices examined were, at planting, nitrogen application rate and cultivar and, later in the season, choices of proceeding with or abandoning each wheat activity, The value of the forecasting system was estimated as the maximum amount the grower could afford to pay for its use without expected utility being lowered relative to its non use.
Resumo:
This study examines the voluntary disclosure of future earnings information in annual reports for Australian listed companies. We find that most Australian companies in our sample do not provide quantitative earnings, forecasts in their annual reports, although more than half of the sample do disclose forward-looking information relating to earnings, without specifically disclosing point estimates for the future. These companies mostly supply qualitative information with a positive bias, while the remainder of the sample discloses no forward-looking information relating to earnings. Our findings also suggest that larger companies with less volatile earnings tend to provide more future earnings information than smaller companies with relatively volatile earnings.
Resumo:
Regional commodity forecasts are being used increasingly in agricultural industries to enhance their risk management and decision-making processes. These commodity forecasts are probabilistic in nature and are often integrated with a seasonal climate forecast system. The climate forecast system is based on a subset of analogue years drawn from the full climatological distribution. In this study we sought to measure forecast quality for such an integrated system. We investigated the quality of a commodity (i.e. wheat and sugar) forecast based on a subset of analogue years in relation to a standard reference forecast based on the full climatological set. We derived three key dimensions of forecast quality for such probabilistic forecasts: reliability, distribution shift, and change in dispersion. A measure of reliability was required to ensure no bias in the forecast distribution. This was assessed via the slope of the reliability plot, which was derived from examination of probability levels of forecasts and associated frequencies of realizations. The other two dimensions related to changes in features of the forecast distribution relative to the reference distribution. The relationship of 13 published accuracy/skill measures to these dimensions of forecast quality was assessed using principal component analysis in case studies of commodity forecasting using seasonal climate forecasting for the wheat and sugar industries in Australia. There were two orthogonal dimensions of forecast quality: one associated with distribution shift relative to the reference distribution and the other associated with relative distribution dispersion. Although the conventional quality measures aligned with these dimensions, none measured both adequately. We conclude that a multi-dimensional approach to assessment of forecast quality is required and that simple measures of reliability, distribution shift, and change in dispersion provide a means for such assessment. The analysis presented was also relevant to measuring quality of probabilistic seasonal climate forecasting systems. The importance of retaining a focus on the probabilistic nature of the forecast and avoiding simplifying, but erroneous, distortions was discussed in relation to applying this new forecast quality assessment paradigm to seasonal climate forecasts. Copyright (K) 2003 Royal Meteorological Society.
Resumo:
Proceedings of the 12th Conference on Dynamical Systems -Theory and Applications
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
This paper uses a field experiment to investigate the quality of individuals’ forecasts of relative performance in tournaments. We ask players in luck-based (poker) and skill-based (chess) tournaments to make point forecasts of rank. The main finding of the paper is that players’ forecasts in both types of tournaments are biased towards overestimation of relative performance. However, the size of the biases found is not as large as the ones often reported in the psychology literature. We also find support for the “unskilled and unaware hypothesis” in chess: high skilled chess players make better forecasts than low skilled chess players. Finally, we find that chess players’ forecasts of relative performance are not efficient.
Resumo:
This thesis examines the effects of macroeconomic factors on inflation level and volatility in the Euro Area to improve the accuracy of inflation forecasts with econometric modelling. Inflation aggregates for the EU as well as inflation levels of selected countries are analysed, and the difference between these inflation estimates and forecasts are documented. The research proposes alternative models depending on the focus and the scope of inflation forecasts. I find that models with a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) in mean process have better explanatory power for inflation variance compared to the regular GARCH models. The significant coefficients are different in EU countries in comparison to the aggregate EU-wide forecast of inflation. The presence of more pronounced GARCH components in certain countries with more stressed economies indicates that inflation volatility in these countries are likely to occur as a result of the stressed economy. In addition, other economies in the Euro Area are found to exhibit a relatively stable variance of inflation over time. Therefore, when analysing EU inflation one have to take into consideration the large differences on country level and focus on those one by one.
Resumo:
Due to the global crisis o f climate change many countries throughout the world are installing the renewable energy o f wind power into their electricity system. Wind energy causes complications when it is being integrated into the electricity system due its intermittent nature. Additionally winds intennittency can result in penalties being enforced due to the deregulation in the electricity market. Wind power forecasting can play a pivotal role to ease the integration o f wind energy. Wind power forecasts at 24 and 48 hours ahead of time are deemed the most crucial for determining an appropriate balance on the power system. In the electricity market wind power forecasts can also assist market participants in terms o f applying a suitable bidding strategy, unit commitment or have an impact on the value o f the spot price. For these reasons this study investigates the importance o f wind power forecasts for such players as the Transmission System Operators (TSOs) and Independent Power Producers (IPPs). Investigation in this study is also conducted into the impacts that wind power forecasts can have on the electricity market in relation to bidding strategies, spot price and unit commitment by examining various case studies. The results o f these case studies portray a clear and insightful indication o f the significance o f availing from the information available from wind power forecasts. The accuracy o f a particular wind power forecast is also explored. Data from a wind power forecast is examined in the circumstances o f both 24 and 48 hour forecasts. The accuracy o f the wind power forecasts are displayed through a variety o f statistical approaches. The results o f the investigation can assist market participants taking part in the electricity pool and also provides a platform that can be applied to any forecast when attempting to define its accuracy. This study contributes significantly to the knowledge in the area o f wind power forecasts by explaining the importance o f wind power forecasting within the energy sector. It innovativeness and uniqueness lies in determining the accuracy o f a particular wind power forecast that was previously unknown.
Resumo:
In this paper we propose a novel empirical extension of the standard market microstructure order flow model. The main idea is that heterogeneity of beliefs in the foreign exchange market can cause model instability and such instability has not been fully accounted for in the existing empirical literature. We investigate this issue using two di¤erent data sets and focusing on out- of-sample forecasts. Forecasting power is measured using standard statistical tests and, additionally, using an alternative approach based on measuring the economic value of forecasts after building a portfolio of assets. We nd there is a substantial economic value on conditioning on the proposed models.
Resumo:
Forecasts of differences in growth between countries serve an important role in the justification of governments’ fiscal policy stances, but are not tested for their accuracy as part of the current range of forecast evaluation methods. This paper examines forecasted and outturn growth differentials between countries to identify if there is usefulness in forecasts of “relative” growth. Using OECD forecasts and outturn values for GDP growth for (combinations of) the G7 countries between 1984 and 2010, the paper finds that the OECD’s success in predicting the relative growth of G7 countries during this period is good. For each two-country combination results indicate that relative growth forecasts are less useful for countries which have smaller outturn growth differentials.
Resumo:
Bayesian model averaging (BMA) methods are regularly used to deal with model uncertainty in regression models. This paper shows how to introduce Bayesian model averaging methods in quantile regressions, and allow for different predictors to affect different quantiles of the dependent variable. I show that quantile regression BMA methods can help reduce uncertainty regarding outcomes of future inflation by providing superior predictive densities compared to mean regression models with and without BMA.
Resumo:
Traffic forecasts provide essential input for the appraisal of transport investment projects. However, according to recent empirical evidence, long-term predictions are subject to high levels of uncertainty. This paper quantifies uncertainty in traffic forecasts for the tolled motorway network in Spain. Uncertainty is quantified in the form of a confidence interval for the traffic forecast that includes both model uncertainty and input uncertainty. We apply a stochastic simulation process based on bootstrapping techniques. Furthermore, the paper proposes a new methodology to account for capacity constraints in long-term traffic forecasts. Specifically, we suggest a dynamic model in which the speed of adjustment is related to the ratio between the actual traffic flow and the maximum capacity of the motorway. This methodology is applied to a specific public policy that consists of suppressing the toll on a certain motorway section before the concession expires.