999 resultados para Programação por restrições


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é desenvolvido um algoritmo enumerativo paramétrico de optimização global para a resolução de Problemas de Programação Matemática com Restrições de Equilíbrio ou de Complementaridade (MPEC). A comparação com outras técnicas globais da literatura é efectuada para um leque variado de problemas, de modo a poder avaliar a eficiência do processo proposto. A utilização de algoritmos de MPEC para a resolução de alguns problemas de optimização global é o outro grande objectivo desta tese. Nesse sentido são introduzidas novas formula¸c˜oes de programas bilineares e lineares complementares como MPECs. São ainda analisadas e discutidas formulaçõess MPEC para o problema de programação linear inteira 0-1, para a determinação do Conjunto Independente Máximo de um Grafo (MIS) e para a estimação do Número de Condição de uma Matriz. Para o problema MIS é desenvolvido um algoritmo de ramificação e limitação, baseado na decomposição de uma função quadrática numa diferença de duas funçõess convexas (DC). Finalmente é introduzida uma técnica MPEC local para a estimação do número de condição com a norma l1 e é estabelecido para matrizes de Minkowski que o número de condição nessa norma pode ser estimado com apenas um sistema de equações lineares. Em todos os desenvolvimentos houve uma grande preocupação em testar as novas formulações e algoritmos com problemas conhecidos da literatura, de modo a aferir da qualidade e interesse dessas propostas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to usage conditions, hazardous environments or intentional causes, physical and virtual systems are subject to faults in their components, which may affect their overall behaviour. In a ‘black-box’ agent modelled by a set of propositional logic rules, in which just a subset of components is externally visible, such faults may only be recognised by examining some output function of the agent. A (fault-free) model of the agent’s system provides the expected output given some input. If the real output differs from that predicted output, then the system is faulty. However, some faults may only become apparent in the system output when appropriate inputs are given. A number of problems regarding both testing and diagnosis thus arise, such as testing a fault, testing the whole system, finding possible faults and differentiating them to locate the correct one. The corresponding optimisation problems of finding solutions that require minimum resources are also very relevant in industry, as is minimal diagnosis. In this dissertation we use a well established set of benchmark circuits to address such diagnostic related problems and propose and develop models with different logics that we formalise and generalise as much as possible. We also prove that all techniques generalise to agents and to multiple faults. The developed multi-valued logics extend the usual Boolean logic (suitable for faultfree models) by encoding values with some dependency (usually on faults). Such logics thus allow modelling an arbitrary number of diagnostic theories. Each problem is subsequently solved with CLP solvers that we implement and discuss, together with a new efficient search technique that we present. We compare our results with other approaches such as SAT (that require substantial duplication of circuits), showing the effectiveness of constraints over multi-valued logics, and also the adequacy of a general set constraint solver (with special inferences over set functions such as cardinality) on other problems. In addition, for an optimisation problem, we integrate local search with a constructive approach (branch-and-bound) using a variety of logics to improve an existing efficient tool based on SAT and ILP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A operação dos Mercados de Energia Eléctrica passa, actualmente, por uma profunda reestruturação, com o principal foco nas transacções do sistema de transmissão entre os diferentes agentes. Tendo isso em conta, o serviço de transmissão neste novo esquema de funcionamento do Mercado de Energia Eléctrica deve ser provido de máxima eficiência económica, atendendo sempre às restrições de segurança do sistema. Com esta reorganização do sector eléctrico da última década surgiu também a necessidade de rever os modelos tradicionais de optimização económica do Sistema Eléctrico de Energia, como por exemplo o despacho e prédespacho (unit commitment). A reestruturação e liberalização dos mercados de energia eléctrica trouxeram novas restrições a alguns dos problemas tradicionais associados aos Sistemas Eléctricos de Energia. Um desses problemas é o Escalonamento da Produção de Energia Eléctrica, que no contexto actual, implica quase sempre negociação entre os diferentes agentes do mercado e consequentemente reescalonamento. A maioria dos métodos usados para a resolução do problema não permitem reformular o prédespacho, algo para que a Programação Lógica por Restrições é extremamente adequada. O trabalho desenvolvido nesta dissertação visa criar uma aplicação computacional com base na Programação Lógica por Restrições, através da plataforma ECLiPSe, para resolver o problema do Escalonamento da Produção de Energia Eléctrica dos grupos térmicos, demonstrando assim a versatilidade e flexibilidade deste tipo de programação aplicada a problema combinatoriais deste género.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este artigo apresenta uma nova abordagem (MM-GAV-FBI), aplicável ao problema da programação de projectos com restrições de recursos e vários modos de execução por actividade, problema conhecido na literatura anglo-saxónica por MRCPSP. Cada projecto tem um conjunto de actividades com precedências tecnológicas definidas e um conjunto de recursos limitados, sendo que cada actividade pode ter mais do que um modo de realização. A programação dos projectos é realizada com recurso a um esquema de geração de planos (do inglês Schedule Generation Scheme - SGS) integrado com uma metaheurística. A metaheurística é baseada no paradigma dos algoritmos genéticos. As prioridades das actividades são obtidas a partir de um algoritmo genético. A representação cromossómica utilizada baseia-se em chaves aleatórias. O SGS gera planos não-atrasados. Após a obtenção de uma solução é aplicada uma melhoria local. O objectivo da abordagem é encontrar o melhor plano (planning), ou seja, o plano que tenha a menor duração temporal possível, satisfazendo as precedências das actividades e as restrições de recursos. A abordagem proposta é testada num conjunto de problemas retirados da literatura da especialidade e os resultados computacionais são comparados com outras abordagens. Os resultados computacionais validam o bom desempenho da abordagem, não apenas em termos de qualidade da solução, mas também em termos de tempo útil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As centrais termoelétricas convencionais convertem apenas parte do combustível consumido na produção de energia elétrica, sendo que outra parte resulta em perdas sob a forma de calor. Neste sentido, surgiram as unidades de cogeração, ou Combined Heat and Power (CHP), que permitem reaproveitar a energia dissipada sob a forma de energia térmica e disponibilizá-la, em conjunto com a energia elétrica gerada, para consumo doméstico ou industrial, tornando-as mais eficientes que as unidades convencionais Os custos de produção de energia elétrica e de calor das unidades CHP são representados por uma função não-linear e apresentam uma região de operação admissível que pode ser convexa ou não-convexa, dependendo das caraterísticas de cada unidade. Por estas razões, a modelação de unidades CHP no âmbito do escalonamento de geradores elétricos (na literatura inglesa Unit Commitment Problem (UCP)) tem especial relevância para as empresas que possuem, também, este tipo de unidades. Estas empresas têm como objetivo definir, entre as unidades CHP e as unidades que apenas geram energia elétrica ou calor, quais devem ser ligadas e os respetivos níveis de produção para satisfazer a procura de energia elétrica e de calor a um custo mínimo. Neste documento são propostos dois modelos de programação inteira mista para o UCP com inclusão de unidades de cogeração: um modelo não-linear que inclui a função real de custo de produção das unidades CHP e um modelo que propõe uma linearização da referida função baseada na combinação convexa de um número pré-definido de pontos extremos. Em ambos os modelos a região de operação admissível não-convexa é modelada através da divisão desta àrea em duas àreas convexas distintas. Testes computacionais efetuados com ambos os modelos para várias instâncias permitiram verificar a eficiência do modelo linear proposto. Este modelo permitiu obter as soluções ótimas do modelo não-linear com tempos computationais significativamente menores. Para além disso, ambos os modelos foram testados com e sem a inclusão de restrições de tomada e deslastre de carga, permitindo concluir que este tipo de restrições aumenta a complexidade do problema sendo que o tempo computacional exigido para a resolução do mesmo cresce significativamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Industrial

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Industrial e de Sistemas (PDEIS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Investigação Operacional vem demonstrando ser uma valiosa ferramenta de gestão nos dias de hoje em que se vive num mercado cada vez mais competitivo. Através da Programação Linear pode-se reproduzir matematicamente um problema de maximização dos resultados ou minimização dos custos de produção com o propósito de auxiliar os gestores na tomada de decisão. A Programação Linear é um método matemático em que a função objectivo e as restrições assumem características lineares, com diversas aplicações no controlo de gestão, envolvendo normalmente problemas de utilização dos recursos disponíveis sujeitos a limitações impostas pelo processo produtivo ou pelo mercado. O objectivo geral deste trabalho é o de propor um modelo de Programação Linear para a programação ou produção e alocação de recursos necessários. Optimizar uma quantidade física designada função objectivo, tendo em conta um conjunto de condicionalismos endógenas às actividades em gestão. O objectivo crucial é dispor um modelo de apoio à gestão contribuindo assim para afectação eficiente de recursos escassos à disposição da unidade económica. Com o trabalho desenvolvido ficou patente a importância da abordagem quantitativa como recurso imprescindível de apoio ao processo de decisão. The operational research has proven to be a valuable management tool today we live in an increasingly competitive market. Through Linear Programming can be mathematically reproduce a problem of maximizing performance or minimizing production costs in order to assist managers in decision making. The Linear Programming is a mathematical method in which the objective function and constraints are linear features, with several applications in the control of management, usually involving problems of resource use are available subject to limitations imposed by the production process or the market. The overall objective of this work is to propose a Linear Programming model for scheduling or production and allocation of necessary resources. Optimizing a physical quantity called the objective function, given a set of endogenous constraints on management thus contributing to efficient allocation of scarce resources available to the economic unit. With the work has demonstrated the importance of the quantitative approach as essential resource to support the decision process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar uma estratégia utilizada para geração de alternativas de manejo na formulação e solução de problemas de planejamento florestal com restrições de recobrimento. O problema de planejamento florestal foi formulado via modelo I e modelo II, assim denominados por Johnson E Scheurman (1977), resultando em problemas de programação linear inteira com 63 e 42 alternativas de manejo, respectivamente. Conforme esperado, no problema formulado via modelo I não houve violação das restrições de recobrimento, enquanto no problema formulado via modelo II algumas unidades de manejo foram fracionadas, fato já esperado, uma vez que essa formulação não assegura a integridade das unidades de manejo. Na formulação via modelo II, para assegurar a integridade das unidades de manejo foi necessário reformular o problema como um problema de programação não-linear inteira, problema esse de solução ainda mais complexa do que os de programação linear inteira. As soluções eficientes dos problemas de programação não-linear inteira esbarram nas limitações de eficiências dos principais algoritmos de solução exata e na carência de aplicações dos algoritmos aproximativos na solução desse tipo de problema, a exemplo das metaeurísticas simulated annealing, busca tabu e algoritmos genéticos, tornando-se, portanto, um atrativo para pesquisas nessa área.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho realiza um estudo sobre a criação de sistemas tempo-real usando orientação a objetos, com enfoque no mapeamento de especificações para linguagens de programação. O paradigma de orientação a objetos tem sido usado nas diferentes fases relacionadas com o desenvolvimento de sistemas tempo-real, variando desde a modelagem até o ambiente de programação e execução, mas atualmente estas iniciativas ainda focam etapas isoladas do ciclo de desenvolvimento. O objetivo deste trabalho é o de preencher esta lacuna, propondo um mapeamento entre uma metodologia ou ferramenta de análise e projeto de sistemas tempo-real orientados a objetos e uma linguagem ou ambiente de desenvolvimento baseado no paradigma de orientação a objetos que possua suporte para atender às restrições temporais especificadas. O mapeamento proposto foi desenvolvido utilizando estudos de caso clássicos em aplicações tempo-real que foram baseados em dois recentes padrões. O primeiro é o emergente padrão Real-Time UML, que visa realizar a especificação de requisitos temporais utilizando diagramas UML com extensões que os representem. O outro padrão é o Real-Time Specification for Java, que consiste de uma interface de programação (API) para desenvolvimento de aplicações tempo-real com a linguagem Java. O relacionamento entre stereotypes e tags usados para representar restrições temporais em diagramas UML e o código Java correspondente é explicado e um sumário da estratégia de mapeamento é discutido.