1000 resultados para Produto de software
Resumo:
Software Product Line (SPL) consists of a software development paradigm, whose main focus is to identify features common and variability among applications in a specific domain. An LPS is designed to attend all products requirements from its product family. These requirements and LPS may have changes over time due to several factors, such as evolution of product requirements, evolution of the market, evolution of SLP process, evolution of the technologies used to develop the products. To handle these changes, LPS should be modified and evolve in order to not become obsolete, and adapt itself to new requirements. The Changes Impact Analysis is an activity that understand and identify what consequences these changes are cause on LPS. Impact Analysis on LPS may be supported by traceability relationships, which identify relationships between artefacts created during all phases of software development. Despite the solutions of change impact analysis based on traceability for software, there is a lack of solutions for assessing the change impact analysis based on traceability for LPS, since existing solutions do not include estimates specific to the artefacts of LPS. Thus, this paper proposes a process of change impact analysis and an tool for assessing the change impact through traceability of artefacts in LPS. For this purpose, we specified a process of change impact analysis that considers artifacts produced during the development of LPS. We have also implemented a tool which allows estimating and identifying artefacts and products of LPS affected from changes in other products, changes in class, changes in features, changes between releases of LPS and artefacts related to changes in core assets and variability. Finally, the results were evaluated through metrics
Resumo:
Through the adoption of the software product line (SPL) approach, several benefits are achieved when compared to the conventional development processes that are based on creating a single software system at a time. The process of developing a SPL differs from traditional software construction, since it has two essential phases: the domain engineering - when common and variables elements of the SPL are defined and implemented; and the application engineering - when one or more applications (specific products) are derived from the reuse of artifacts created in the domain engineering. The test activity is also fundamental and aims to detect defects in the artifacts produced in SPL development. However, the characteristics of an SPL bring new challenges to this activity that must be considered. Several approaches have been recently proposed for the testing process of product lines, but they have been shown limited and have only provided general guidelines. In addition, there is also a lack of tools to support the variability management and customization of automated case tests for SPLs. In this context, this dissertation has the goal of proposing a systematic approach to software product line testing. The approach offers: (i) automated SPL test strategies to be applied in the domain and application engineering, (ii) explicit guidelines to support the implementation and reuse of automated test cases at the unit, integration and system levels in domain and application engineering; and (iii) tooling support for automating the variability management and customization of test cases. The approach is evaluated through its application in a software product line for web systems. The results of this work have shown that the proposed approach can help the developers to deal with the challenges imposed by the characteristics of SPLs during the testing process
Resumo:
The approach Software Product Line (SPL) has become very promising these days, since it allows the production of customized systems on large scale through product families. For the modeling of these families the Features Model is being widely used, however, it is a model that has low level of detail and not may be sufficient to guide the development team of LPS. Thus, it is recommended add the Features Model to other models representing the system from other perspectives. The goals model PL-AOVgraph can assume this role complementary to the Features Model, since it has a to context oriented language of LPS's, which allows the requirements modeling in detail and identification of crosscutting concerns that may arise as result of variability. In order to insert PL-AOVgraph in development of LPS's, this paper proposes a bi-directional mapping between PL-AOVgraph and Features Model, which will be automated by tool ReqSys-MDD. This tool uses the approach of Model-Driven Development (MDD), which allows the construction of systems from high level models through successive transformations. This enables the integration of ReqSys-MDD with other tools MDD that use their output models as input to other transformations. So it is possible keep consistency among the models involved, avoiding loss of informations on transitions between stages of development
Resumo:
The Exception Handling (EH) is a widely used mechanism for building robust systems. In Software Product Line (SPL) context it is not different. As EH mechanisms are embedded in most of mainstream programming languages (like Java, C# and C++), we can find exception signalers and handlers spread over code assets associated to common and variable SPL features. When exception signalers and handlers are added to an SPL in an unplanned way, one of the possible consequences is the generation of faulty family instances (i.e., instances on which common or variable features signal exceptions that are mistakenly caught inside the system). In this context, some questions arise: How exceptions flow between the optional and alternative features an LPS? Aiming at providing answers to these questions, this master thesis conducted an exploratory study, based on code inspection and static analysis code, whose goal was to categorize the main ways which exceptions flow in LPSs. To support the study, we developed an static analysis tool called PLEA (Product Line Exception Analyzer) that calculates the exceptional flows of LPSs, and categorize these flows according to the features associated with handlers and signalers. Preliminary results showed that some types of exceptional flows have more potential to yield failures in exceptional behavior of SLPs
Resumo:
Software Products Lines (SPL) is a software engineering approach to developing software system families that share common features and differ in other features according to the requested software systems. The adoption of the SPL approach can promote several benefits such as cost reduction, product quality, productivity, and time to market. On the other hand, the SPL approach brings new challenges to the software evolution that must be considered. Recent research work has explored and proposed automated approaches based on code analysis and traceability techniques for change impact analysis in the context of SPL development. There are existing limitations concerning these approaches such as the customization of the analysis functionalities to address different strategies for change impact analysis, and the change impact analysis of fine-grained variability. This dissertation proposes a change impact analysis tool for SPL development, called Squid Impact Analyzer. The tool allows the implementation of change impact analysis based on information from variability modeling, mapping of variability to code assets, and existing dependency relationships between code assets. An assessment of the tool is conducted through an experiment that compare the change impact analysis results provided by the tool with real changes applied to several evolution releases from a SPL for media management in mobile devices
Resumo:
Dissertação apresentada Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
A tecnologia de workflow vem apresentando um grande crescimento nos últimos anos. Os Workflow Management Systems (WfMS) ou Sistemas de Gerenciamento de Workflow oferecem uma abordagem sistemática para uniformizar, automatizar e gerenciar os processos de negócios. Esta tecnologia requer técnicas de engenharia de software que facilitem a construção desse tipo de sistema. Há muito vem se formando uma consciência em engenharia de software de que para a obtenção de produtos com alta qualidade e que sejam economicamente viáveis torna-se necessário um conjunto sistemático de processos, técnicas e ferramentas. A reutilização está entre as técnicas mais relevantes desse conjunto. Parte-se do princípio que, reutilizando partes bem especificadas, desenvolvidas e testadas, pode-se construir software em menor tempo e com maior confiabilidade. Muitas técnicas que favorecem a reutilização têm sido propostas ao longo dos últimos anos. Entre estas técnicas estão: engenharia de domínio, frameworks, padrões, arquitetura de software e desenvolvimento baseado em componentes. Porém, o que falta nesse contexto é uma maneira sistemática e previsível de realizar a reutilização. Assim, o enfoque de linha de produto de software surge como uma proposta sistemática de desenvolvimento de software, baseada em uma família de produtos que compartilham um conjunto gerenciado de características entre seus principais artefatos. Estes artefatos incluem uma arquitetura base e um conjunto de componentes comuns para preencher esta arquitetura. O projeto de uma arquitetura para uma família de produtos deve considerar as semelhanças e variabilidades entre os produtos desta família. Esta dissertação apresenta uma proposta de arquitetura de linha de produto para sistemas de gerenciamento de workflow. Esta arquitetura pode ser usada para facilitar o processo de produção de diferentes sistemas de gerenciamento de workflow que possuem características comuns, mas que também possuam aspectos diferentes de acordo com as necessidades da indústria. O desenvolvimento da arquitetura proposta tomou como base a arquitetura genérica e o modelo de referência da Workflow Management Coalition (WfMC) e o padrão de arquitetura Process Manager desenvolvido no contexto do projeto ExPSEE1. O processo de desenvolvimento da arquitetura seguiu o processo sugerido pelo Catalysis com algumas modificações para representar variabilidade. A arquitetura proposta foi descrita e simulada através da ADL (Architecture Description Language) Rapide. A principal contribuição deste trabalho é uma arquitetura de linha de produto para sistemas de gerenciamento de workflow. Pode-se destacar também contribuições para uma proposta de sistematização de um processo de desenvolvimento de arquitetura de linha de produto e também um melhor entendimento dos conceitos e abordagens relacionados à prática de linha de produto, uma vez que esta tecnologia é recente e vem sendo largamente aplicada nas empresas.
Resumo:
O crescimento experimentado pela indústria do software nas últimas décadas, trouxe consigo o aumento das exigências do mercado. É exigido das organizações de software, que os sistemas sejam construídos de acordo com prazo e custos determinados, obedecendo-se certos padrões de qualidade. Para atender tais exigências e assim obter o diferencial competitivo, tornou-se necessário investir no processo de desenvolvimento de software, dada a relação cada vez mais evidente entre a qualidade do produto de software e a eficiência e eficácia do processo de desenvolvimento adotado. Uma estratégia na busca pela maturidade em termos de processos é a definição e adoção de um processo único a ser seguido em todos os projetos de uma organização, denominado processo padrão. Levando-se em consideração a singularidade de cada novo projeto de software, é natural presumir que o processo padrão tenha de ser adaptado para as necessidades específicas de cada situação, de forma a ser aceito, ter seu uso maximizado e garantir a qualidade do software a ser produzido. Este trabalho apresenta, assim, o APSEE-Tail, um modelo para apoiar o engenheiro de processos na tarefa de adaptar o processo padrão de uma organização de software para as particularidades de cada um de seus projetos, possibilitando maior efetividade e eficiência no uso do mesmo. Sua abordagem de adaptação é livre, orientada à atividades e baseada no raciocínio, através da combinação das técnicas de interpretação de regras e CBR (Case Based Reasoning), sobre o conhecimento necessário. Tal conhecimento, neste trabalho, é agrupado em três categorias: diretrizes de adaptação do processo padrão, tipos de característica usados para definir os projetos de software e informações sobre adaptações realizadas anteriormente. Os diferentes componentes envolvidos na definição do APSEE-Tail foram especificados algebricamente, o que constituiu uma base semântica de alto nível de abstração e possibilitou a construção de um protótipo, implementado no ADS (Ambiente de Desenvolvimento de Software) Prosoft-Java e fracamente acoplado ao APSEE, um ambiente de engenharia de software centrado no processo também prototipado no Prosoft-Java, tornando-se assim parte do meta-processo adotado pelo mesmo. O texto apresenta ainda alguma fundamentação teórica sobre a área de Adaptação de Processos de Software, considerações sobre as abordagens pesquisadas, enfatizando as que mais influenciaram o APSEE-Tail, e um exemplo de aplicação do protótipo construído. Por fim, são apresentadas as contribuições e limitações da proposta, na visão do autor, bem como os trabalhos futuros vislumbrados.
Resumo:
Product derivation tools are responsible for automating the development process of software product lines. The configuration knowledge, which is responsible for mapping the problem space to the solution space, plays a fundamental role on product derivation approaches. Each product derivation approach adopts different strategies and techniques to manage the existing variabilities in code assets. There is a lack of empirical studies to analyze these different approaches. This dissertation has the aim of comparing systematically automatic product derivation approaches through of the development of two different empirical studies. The studies are analyzed under two perspectives: (i) qualitative that analyzes the characteristics of approaches using specific criteria; and (ii) quantitative that quantifies specific properties of product derivation artifacts produced for the different approaches. A set of criteria and metrics are also being proposed with the aim of providing support to the qualitative and quantitative analysis. Two software product lines from the web and mobile application domains are targets of our study
Resumo:
This dissertation presents a model-driven and integrated approach to variability management, customization and execution of software processes. Our approach is founded on the principles and techniques of software product lines and model-driven engineering. Model-driven engineering provides support to the specification of software processes and their transformation to workflow specifications. Software product lines techniques allows the automatic variability management of process elements and fragments. Additionally, in our approach, workflow technologies enable the process execution in workflow engines. In order to evaluate the approach feasibility, we have implemented it using existing model-driven engineering technologies. The software processes are specified using Eclipse Process Framework (EPF). The automatic variability management of software processes has been implemented as an extension of an existing product derivation tool. Finally, ATL and Acceleo transformation languages are adopted to transform EPF process to jPDL workflow language specifications in order to enable the deployment and execution of software processes in the JBoss BPM workflow engine. The approach is evaluated through the modeling and modularization of the project management discipline of the Open Unified Process (OpenUP)
Resumo:
The tracking between models of the requirements and architecture activities is a strategy that aims to prevent loss of information, reducing the gap between these two initial activities of the software life cycle. In the context of Software Product Lines (SPL), it is important to have this support, which allows the correspondence between this two activities, with management of variability. In order to address this issue, this paper presents a process of bidirectional mapping, defining transformation rules between elements of a goaloriented requirements model (described in PL-AOVgraph) and elements of an architectural description (defined in PL-AspectualACME). These mapping rules are evaluated using a case study: the GingaForAll LPS. To automate this transformation, we developed the MaRiPLA tool (Mapping Requirements to Product Line Architecture), through MDD techniques (Modeldriven Development), including Atlas Transformation Language (ATL) with specification of Ecore metamodels jointly with Xtext , a DSL definition framework, and Acceleo, a code generation tool, in Eclipse environment. Finally, the generated models are evaluated based on quality attributes such as variability, derivability, reusability, correctness, traceability, completeness, evolvability and maintainability, extracted from the CAFÉ Quality Model
Resumo:
This work shows a project method proposed to design and build software components from the software functional m del up to assembly code level in a rigorous fashion. This method is based on the B method, which was developed with support and interest of British Petroleum (BP). One goal of this methodology is to contribute to solve an important problem, known as The Verifying Compiler. Besides, this work describes a formal model of Z80 microcontroller and a real system of petroleum area. To achieve this goal, the formal model of Z80 was developed and documented, as it is one key component for the verification upto the assembly level. In order to improve the mentioned methodology, it was applied on a petroleum production test system, which is presented in this work. Part of this technique is performed manually. However, almost of these activities can be automated by a specific compiler. To build such compiler, the formal modelling of microcontroller and modelling of production test system should provide relevant knowledge and experiences to the design of a new compiler. In ummary, this work should improve the viability of one of the most stringent criteria for formal verification: speeding up the verification process, reducing design time and increasing the quality and reliability of the product of the final software. All these qualities are very important for systems that involve serious risks or in need of a high confidence, which is very common in the petroleum industry
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)