993 resultados para Production scheduling
Resumo:
In todays competitive markets, the importance of goodscheduling strategies in manufacturing companies lead to theneed of developing efficient methods to solve complexscheduling problems.In this paper, we studied two production scheduling problemswith sequence-dependent setups times. The setup times areone of the most common complications in scheduling problems,and are usually associated with cleaning operations andchanging tools and shapes in machines.The first problem considered is a single-machine schedulingwith release dates, sequence-dependent setup times anddelivery times. The performance measure is the maximumlateness.The second problem is a job-shop scheduling problem withsequence-dependent setup times where the objective is tominimize the makespan.We present several priority dispatching rules for bothproblems, followed by a study of their performance. Finally,conclusions and directions of future research are presented.
Resumo:
PRECON S.A is a manufacturing company dedicated to produce prefabricatedconcrete parts to several industries as rail transportation andagricultural industries.Recently, PRECON signed a contract with RENFE,the Spanish Nnational Rail Transportation Company to manufacturepre-stressed concrete sleepers for siding of the new railways of the highspeed train AVE. The scheduling problem associated with the manufacturingprocess of the sleepers is very complex since it involves severalconstraints and objectives. The constraints are related with productioncapacity, the quantity of available moulds, satisfying demand and otheroperational constraints. The two main objectives are related withmaximizing the usage of the manufacturing resources and minimizing themoulds movements. We developed a deterministic crowding genetic algorithmfor this multiobjective problem. The algorithm has proved to be a powerfuland flexible tool to solve the large-scale instance of this complex realscheduling problem.
Resumo:
Tutkimuksen päätavoite on arvioida, ovatko neljä ohjelmistovaihtoehtoa riittäviä tuotannon aikataulutuksen työkaluja ja mikä työkaluista sopii toimeksiantajayritykselle. Alatavoitteena on kuvata tuotannon aikataulutuksen nyky- ja tahtotila prosessimallinnuksen avulla, selvittää työkalun käyttäjätarpeet ja määritellä priorisoidut valintakriteerit työkalulle.Tutkimuksen teoriaosuudessa tutkitaan tuotannon aikataulutuksen logiikkaa ja haasteita. Työssä tarkastellaan aikataulutusohjelmiston valintaa rinnakkain prosessinmallinnuksen kanssa. Aikataulutusohjelmistovaihtoehdot ja metodit käyttäjätarpeiden selvittämiseksi käydään läpi. Empiriaosuudessa selvitetään tutkimuksen suhde toimeksiantajayrityksen strategiaan. Käyttäjätarpeet selvitetään haastattelujen avulla jaanalysoidaan QFD matriisin avulla. Toimeksiantajayrityksen tuotannon aikataulutuksen nyky- ja tahtotilaprosessit mallinnetaan, jotta ohjelmistojen sopivuutta, aikataulutusprosessia tukevana työkaluna voidaan arvioida.Tutkimustuloksena ovatpriorisoidut valintakriteerit aikataulutustyökalulle eli käyttäjätarpeista johdetut tärkeimmät toiminnalliset ominaisuudet, järjestelmätoimittaja-arvio sekä suositukset jatkotoimenpiteistä ja lisätutkimuksesta.
Resumo:
An Advanced Planning System (APS) offers support at all planning levels along the supply chain while observing limited resources. We consider an APS for process industries (e.g. chemical and pharmaceutical industries) consisting of the modules network design (for long–term decisions), supply network planning (for medium–term decisions), and detailed production scheduling (for short–term decisions). For each module, we outline the decision problem, discuss the specifi cs of process industries, and review state–of–the–art solution approaches. For the module detailed production scheduling, a new solution approach is proposed in the case of batch production, which can solve much larger practical problems than the methods known thus far. The new approach decomposes detailed production scheduling for batch production into batching and batch scheduling. The batching problem converts the primary requirements for products into individual batches, where the work load is to be minimized. We formulate the batching problem as a nonlinear mixed–integer program and transform it into a linear mixed–binary program of moderate size, which can be solved by standard software. The batch scheduling problem allocates the batches to scarce resources such as processing units, workers, and intermediate storage facilities, where some regular objective function like the makespan is to be minimized. The batch scheduling problem is modelled as a resource–constrained project scheduling problem, which can be solved by an efficient truncated branch–and–bound algorithm developed recently. The performance of the new solution procedures for batching and batch scheduling is demonstrated by solving several instances of a case study from process industries.
Resumo:
Investment in mining projects, like most business investment, is susceptible to risk and uncertainty. The ability to effectively identify, assess and manage risk may enable strategic investments to be sheltered and operations to perform closer to their potential. In mining, geological uncertainty is seen as the major contributor to not meeting project expectations. The need to assess and manage geological risk for project valuation and decision-making translates to the need to assess and manage risk in any pertinent parameter of open pit design and production scheduling. This is achieved by taking geological uncertainty into account in the mine optimisation process. This thesis develops methods that enable geological uncertainty to be effectively modelled and the resulting risk in long-term production scheduling to be quantified and managed. One of the main accomplishments of this thesis is the development of a new, risk-based method for the optimisation of long-term production scheduling. In addition to maximising economic returns, the new method minimises the risk of deviating from production forecasts, given the understanding of the orebody. This ability represents a major advance in the risk management of open pit mining.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
The widespread implementation of Manufacturing Resource Planning (MRPII) systems in this country and abroad and the reported dissatisfaction with their use formed the initial basis of this piece of research which concentrates on the fundamental theory and design of the Closed Loop MRPII system itself. The dissertation concentrates on two key aspects namely; how Master Production Scheduling is carried out in differing business environments and how well the `closing of the loop' operates by checking the capcity requirements of the different levels of plans within an organisation. The main hypothesis which is tested is that in U.K. manufacturing industry, resource checks are either not being carried out satisfactorily or they are not being fed back to the appropriate plan in a timely fashion. The research methodology employed involved initial detailed investigations into Master Scheduling and capacity planning in eight diverse manufacturing companies. This was followed by a nationwide survey of users in 349 companies, a survey of all the major suppliers of Production Management software in the U.K. and an analysis of the facilities offered by current software packages. The main conclusion which is drawn is that the hypothesis is proved in the majority of companies in that only just over 50% of companies are attempting Resource and Capacity Planning and only 20% are successfully feeding back CRP information to `close the loop'. Various causative factors are put forward and remedies are suggested.