976 resultados para Probability and Statistics
Resumo:
Now in its sixth edition, the Traffic Engineering Handbook continues to be a must have publication in the transportation industry, as it has been for the past 60 years. The new edition provides updated information for people entering the practice and for those already practicing. The handbook is a convenient desk reference, as well as an all in one source of principles and proven techniques in traffic engineering. Most chapters are presented in a new format, which divides the chapters into four areas-basics, current practice, emerging trends and information sources. Chapter topics include road users, vehicle characteristics, statistics, planning for operations, communications, safety, regulations, traffic calming, access management, geometrics, signs and markings, signals, parking, traffic demand, maintenance and studies. In addition, as the focus in transportation has shifted from project based to operations based, two new chapters have been added-"Planning for Operations" and "Managing Traffic Demand to Address Congestion: Providing Travelers with Choices." The Traffic Engineering Handbook continues to be one of the primary reference sources for study to become a certified Professional Traffic Operations Engineer™. Chapters are authored by notable and experienced authors, and reviewed and edited by a distinguished panel of traffic engineering experts.
Resumo:
Probability and Statistics—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Probability and Statistics. Descriptive statistics are presented first, and probability is reviewed secondly. Discrete and continuous distributions are presented. Sample and estimation with hypothesis testing are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
An introductory course in probability and statistics for third-year and fourth-year electrical engineering students is described. The course is centered around several computer-based projects that are designed to achieve two objectives. First, the projects illustrate the course topics and provide hands-on experience for the students. The second and equally important objective of the projects is to convey the relevance and usefulness of probability and statistics to practical problems that undergraduate students can appreciate. The benefit of this course as to motivate electrical engineering students to excel in the study of probability concepts, instead of viewing the subject as one more course requirement toward graduation. The authors co-teach the course, and MATLAB is used for mast of the computer-based projects
Resumo:
Probability and Statistics were included in the Basic General Education curricula by the Ministry of Public Education (Costa Rica), since 1995. To analyze the teaching reality in these fields, a research was conducted in two educational regions of the country: Heredia and Pérez Zeledón. The survey included university training and updating processes of teachers teaching Statistics and Probability in the schools. The research demonstrated the limited university training in these fields, the dissatisfaction of teachers about it, and the poor support of training institutions to their professional exercise.
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
The talk starts out with a short introduction to the philosophy of probability. I highlight the need to interpret probabilities in the sciences and motivate objectivist accounts of probabilities. Very roughly, according to such accounts, ascriptions of probabilities have truth-conditions that are independent of personal interests and needs. But objectivist accounts are pointless if they do not provide an objectivist epistemology, i.e., if they do not determine well-defined methods to support or falsify claims about probabilities. In the rest of the talk I examine recent philosophical proposals for an objectivist methodology. Most of them take up ideas well-known from statistics. I nevertheless find some proposals incompatible with objectivist aspirations.
Resumo:
With rapid and continuing growth of learning support initiatives in mathematics and statistics found in many parts of the world, and with the likelihood that this trend will continue, there is a need to ensure that robust and coherent measures are in place to evaluate the effectiveness of these initiatives. The nature of learning support brings challenges for measurement and analysis of its effects. After briefly reviewing the purpose, rationale for, and extent of current provision, this article provides a framework for those working in learning support to think about how their efforts can be evaluated. It provides references and specific examples of how workers in this field are collecting, analysing and reporting their findings. The framework is used to structure evaluation in terms of usage of facilities, resources and services provided, and also in terms of improvements in performance of the students and staff who engage with them. Very recent developments have started to address the effects of learning support on the development of deeper approaches to learning, the affective domain and the development of communities of practice of both learners and teachers. This article intends to be a stimulus to those who work in mathematics and statistics support to gather even richer, more valuable, forms of data. It provides a 'toolkit' for those interested in evaluation of learning support and closes by referring to an on-line resource being developed to archive the growing body of evidence. © 2011 Taylor & Francis.
Resumo:
The operation of the law rests on the selection of an account of the facts. Whether this involves prediction or postdiction, it is not possible to achieve certainty. Any attempt to model the operation of the law completely will therefore raise questions of how to model the process of proof. In the selection of a model a crucial question will be whether the model is to be used normatively or descriptively. Focussing on postdiction, this paper presents and contrasts the mathematical model with the story model. The former carries the normative stamp of scientific approval, whereas the latter has been developed by experimental psychologists to describe how humans reason. Neil Cohen's attempt to use a mathematical model descriptively provides an illustration of the dangers in not clearly setting this parameter of the modelling process. It should be kept in mind that the labels 'normative' and 'descriptive' are not eternal. The mathematical model has its normative limits, beyond which we may need to critically assess models with descriptive origins.
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.
Resumo:
Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behavior of collections of active particles-active matter-with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogs. Theory and experiment are discussed side by side.
Resumo:
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745-785) to characterize unitary stationary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson-Parthasarathy equation is proved.