955 resultados para Pro-oxidant
Resumo:
The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The catalase mimetic complex Mn(III)-salen chloride (EUK8) was found to be pro-oxidant under low hydrogen peroxide concentrations. The increase in the fluorescence rate of the probe 1,2,3-dihydrorhodamine (DHR) in solution, as well as the carbonyl content of human serum albumin were found to be maximum at H(2)O(2):EUK8 molar ratios ranging from 0 to 2, supporting previous findings regarding the mechanism of EUK8 catalase activity and the formation of highly oxidative Mn(V)-O(2-) species. This pro-oxidant effect is precluded by the presence of glutathione. Cytotoxicity to HeLa cells, as probed by increased rate of oxidation of intracellular DHR, was not observed. Our findings suggest that the combination of H(2)O(2) and EUK8 at specific molar ratios, in the absence of reductants/antioxidants, induces the oxidation of organic molecules. It is shown that the fluorimetric determination of pro-oxidant activity of metal complexes is more sensitive than the colorimetric quantification of protein carbonyl content. The implications of our findings with respect to the somewhat confusing results arising from in vivo studies of EUK8 and other Mn(III) anti-oxidant metal complexes are discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Copper complexes with fluorinated beta-diketones were synthesized and characterized in terms of lipophilicity and peroxide-assisted oxidation of dihydrorhodamine as an indicator of redox activity. The biological activity of the complexes was tested against promastigotes of Leishmania amazonensis. Inhibition of trypanosomatid-specific trypanothione reductase was also tested. It was found that the highly lipophilic and redox-active bis(trifluoroacetylacetonate) derivative had increased toxicity towards promastigotes. These results indicate that it is possible to modulate the activity of metallodrugs based on redox-active metals through the appropriate choice of lipophilic chelators in order to design new antileishmanials. Further work will be necessary to improve selectivity of these compounds against the parasite.
Resumo:
Vitamin C is marketed as a dietary supplement, partly because of its 'antioxidant' properties. However, we report here that vitamin C administered as a dietary supplement to healthy humans exhibits a pro-oxidant, as well as an antioxidant, effect in vivo.
Resumo:
L’athérosclérose est une maladie vasculaire inflammatoire chronique qui se développe progressivement au cours de la vie. Les mécanismes impliqués sont complexes et la recherche de nouveaux candidats impliqués dans l'athérogénèse est toujours d'actualité. L’Angiopoietine-like 2 (Angptl2) est une protéine relativement peu connue, aux propriétés pro-angiogéniques et pro-inflammatoires, qui appartient par homologie à la grande famille des angiopoietines, mais dont le récepteur n'est pas encore clairement identifié. Les situations pathologiques dans lesquelles l’Angptl2 jouerait un rôle crucial sont diverses, mais sa contribution moléculaire dans le développement de l’athérosclérose est inconnue. Par differential display, nous avons initialement identifié l'Angptl2 comme étant surexprimée dans des cellules endothéliales sénescentes, isolées et cultivées à partir d'artères mammaires internes de patients athérosclérotiques ayant subi un pontage coronarien. Cette découverte a été la à base de mon projet, et mes objectifs ont été 1) de déterminer l'implication de l’Angptl2 vasculaire en présence de facteurs de risques tels que le tabagisme et la dyslipidémie, 2) de produire et de purifier une protéine recombinante fonctionnelle de l’Angptl2 afin d'identifier in vitro de nouvelles propriétés cellulaires de l'Angptl2 et 3) d'étudier in vivo le potentiel pro-athérogénique de l'Angptl2 recombinante dans un modèle murin de dyslipidémie sévère. Nous avons montré que l’Angptl2 est sécrétée préférentiellement dans des conditions pro-oxydantes et pro-inflammatoires, avec une augmentation de son expression endothéliale de l’ordre de 6 fois chez des patients coronariens fumeurs atteints de maladie pulmonaire obstructive chronique. Suite à ces résultats, nous avons émis l’hypothèse que l’Angptl2, en plus de ses fonctions pro-inflammatoires connues, possède des propriétés pro-oxydantes. Nous avons démontré que l’Angptl2 recombinante stimule en effet la production de radicaux libres dans des HUVEC en culture, via l’inhibition partielle de la voie cytoprotectrice antioxydante Nrf2/HO-1 et potentiellement via l'activation de kinase intracellulaire de type p38. A l'aide de souris dyslipidémiques LDLr-/-; hApoB-100+/+, nous avons démontré que le niveau d’Angptl2 plasmatique, vasculaire et dans les plaques athéromateuses, augmente parallèlement avec le développement de l’athérosclérose. De plus, une stimulation avec l’Angptl2 recombinante engendre chez ces souris une réponse inflammatoire évaluée par l’expression endothéliale de cytokines et de molécules d'adhésion et par l’infiltration de leucocytes sur l’endothélium vasculaire. Finalement, l’administration intraveineuse de la protéine recombinante d’Angptl2 pendant quatre semaines à des souris LDLr-/-; hApoB-100+/+ augmente de 10 fois l'expansion de la plaque athérosclérotique et double leur taux de cholestérol circulant. Nous avons aussi montré que chez des patients athérosclérotiques, l'Angptl2 plasmatique est 6 fois plus élevée que chez des sujets sains du même âge. Nos études semblent donc définir l’Angptl2 comme un facteur contribuant directement au développement de l'athérosclérose en favorisant la sénescence, l’inflammation et l’oxydation des cellules endothéliales. Ces propriétés pourraient globalement définir l'Angptl2, non seulement comme un nouveau biomarqueur circulant de l’athérosclérose, mais également comme l'un de ses promoteurs.
Resumo:
Reduced glutathione (GSH) protects cells against injury by oxidative stress and maintains a range of vital functions. In vitro cell cultures have been used as experimental models to study the role of GSH in chemical toxicity in mammals; however, this approach has been rarely used with fish cells to date. The present study aimed to evaluate sensitivity and specificity of three fluorescent dyes for measuring pro-oxidant-induced changes of GSH contents in fish cell lines: monochlorobimane (mBCl), 5-chloromethylfluorescein diacetate (CMFDA) and 7-amino-4-chloromethylcoumarin (CMAC-blue). Two cell lines were studied, the EPC line established from a skin tumour of carp Cyprinus carpio, and BF-2 cells established from fins of bluegill sunfish Lepomis macrochirus. The cells were exposed for 6 and 24 h to low cytotoxic concentrations of pro-oxidants including hydrogen peroxide, paraquat (PQ), copper and the GSH synthesis inhibitor, L-buthionine-SR-sulfoximine (BSO). The results indicate moderate differences in the GSH response between EPC and BF-2 cells, but distinct differences in the magnitude of the GSH response for the four pro-oxidants. Further, the choice of GSH dye can critically affect the results, with CMFDA appearing to be less specific for GSH than mBCl and CMAC-blue.
Resumo:
The effect of S,S-ethylenediaminedisuccinic acid (edds) on the quenching of metal-catalyzed (metal = Mn, Fe, Co, Ni, Cu, Zn) oxidation of ascorbic acid was tested in vitro via oxidation of the fluorescent probe 1,2,3-dihydrorhodamine dihydrochloride. The pro-oxidant activity of iron was not fully suppressed, even at a four-fold molar excess of the ligand. The effect of serum on the toxicity to peripheral blood mononuclear cells (PBMC) and K562 cells was investigated. The cytotoxic effect of Fe-edds was abrogated in the presence of Trolox or serum proteins. The probable pathways of cell toxicity were investigated through blocking of the monocarboxylate transporters (MCT) in association with cell cycle studies by flow cytometry. Cells treated with metal complexes and alpha-cyano-4-hydroxycinnamic acid, a known MCT inhibitor, showed recovery of viability, suggesting that MCT proteins may be involved in the internalization of metal-edds complexes. The free acid induced cell cycle arrest in G0/G1 (PBMC) and S (K562) phases, suggesting direct DNA damage or interference in DNA replication.
Resumo:
The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.
Resumo:
The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.
Resumo:
The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3`3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 mu M, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 mu M, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents Superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different. as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD. (C) 2009 Elsevier B.V. All rights reserved.