980 resultados para Primal-dual method
Resumo:
We present a novel approach to the reconstruction of depth from light field data. Our method uses dictionary representations and group sparsity constraints to derive a convex formulation. Although our solution results in an increase of the problem dimensionality, we keep numerical complexity at bay by restricting the space of solutions and by exploiting an efficient Primal-Dual formulation. Comparisons with state of the art techniques, on both synthetic and real data, show promising performances.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper proposes a technique for solving the multiobjective environmental/economic dispatch problem using the weighted sum and ε-constraint strategies, which transform the problem into a set of single-objective problems. In the first strategy, the objective function is a weighted sum of the environmental and economic objective functions. The second strategy considers one of the objective functions: in this case, the environmental function, as a problem constraint, bounded above by a constant. A specific predictor-corrector primal-dual interior point method which uses the modified log barrier is proposed for solving the set of single-objective problems generated by such strategies. The purpose of the modified barrier approach is to solve the problem with relaxation of its original feasible region, enabling the method to be initialized with unfeasible points. The tests involving the proposed solution technique indicate i) the efficiency of the proposed method with respect to the initialization with unfeasible points, and ii) its ability to find a set of efficient solutions for the multiobjective environmental/economic dispatch problem.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents a new approach to minimize the losses in electrical power systems. This approach considers the application of the primal-dual logarithmic barrier method to voltage magnitude and tap-changing transformer variables, and the other inequality constraints are treated by augmented Lagrangian method. The Lagrangian function aggregates all the constraints. The first-order necessary conditions are reached by Newton's method, and by updating the dual variables and penalty factors. Test results are presented to show the good performance of this approach.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
This paper presents a new approach to the resolution of the Optimal Power Flow problem. In this approach the inequality constraints are treated by the Modified Barrier and Primal-Dual Logarithmic Barrier methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables, which are perturbed by the barrier parameter. A Lagrangian function is associated with the modified problem. The first-order necessary conditions are applied to the Lagrangian, generating a nonlinear system which is solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. Numerical tests on the Brazilian CESP and South-Southeast systems and a comparative test indicated that the new approach efficiently resolves of the Optimal Power Flow problem. © 2007 IEEE.
Resumo:
Este artigo traz os resultados obtidos através do estudo e da aplicação do Método Primal-Dual Previsor-Corretor de Pontos Interiores para Problema de Programação Quadr´atica convexa a um Problema de Despacho Econômico (PDE) e a um Problema Multiobjetivo de Despacho Econômico e Ambiental (DEA). O primeiro problema busca determinar a solução ótima aproximada, minimizando os custos dos combustíveis empregados na geração termoelétrica de energia e satisfazendo as restrições operacionais. Já o segundo é solucionado através do Método da Soma Ponderada, que apresenta um balanceamento entre o problema de otimização dos custos e o problema de emissão de poluentes. Ao final do artigo, um algoritmo para cada problema é proposto e implementado computacionalmente utilizando o software Borland C++ Builder 6.0. Os testes foram realizados utilizando um PDE de 13 geradores e um DEA de 06 geradores e os resultados obtidos demonstram a eficiˆencia dos m´etodos quando comparados a outros encontrados na literatura.