912 resultados para Previsão Estatística
Resumo:
Com origem no setor imobiliário americano, a crise de crédito de 2008 gerou grandes perdas nos mercados ao redor do mundo. O mês de outubro do mesmo ano concentrou a maior parte da turbulência, apresentando também uma explosão na volatilidade. Em meados de 2006 e 2007, o VIX, um índice de volatilidade implícita das opções do S&P500, registrou uma elevação de patamar, sinalizando o possível desequilíbrio existente no mercado americano. Esta dissertação analisa se o consenso de que a volatilidade implícita é a melhor previsora da volatilidade futura permanece durante o período de crise. Os resultados indicam que o VIX perde poder explicativo ao se passar do período sem crise para o de crise, sendo ultrapassado pela volatilidade realizada.
Resumo:
Uma equação de regressão múltipla MOS (da sigla em inglês para Model Output Statistics), para previsão da temperatura mínima diária do ar na cidade de Bauru, estado de São Paulo, é desenvolvida. A equação de regressão múltipla, obtida usando análise de regressão stepwise, tem quatro preditores, três do modelo numérico global do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) e um observacional da estação meteorológica do Instituto de Pesquisas Meteorológicas (IPMet), Bauru. Os preditores são prognósticos para 24 horas do modelo global, válidos para 00:00GMT, da temperatura em 1000hPa, vento meridional em 850hPa e umidade relativa em 1000hPa, e temperatura observada às 18:00GMT. Esses quatro preditores explicam, aproximadamente, 80% da variância total do preditando, com erro quadrático médio de 1,4°C, que é aproximadamente metade do desvio padrão da temperatura mínima diária do ar observada na estação do IPMet. Uma verificação da equação MOS com uma amostra independente de 47 casos mostra que a previsão não se deteriora significativamente quando o preditor observacional for desconsiderado. A equação MOS, com ou sem esse preditor, produz previsões com erro absoluto menor do que 1,5°C em 70% dos casos examinados. Este resultado encoraja a utilização da técnica MOS para previsão operacional da temperatura mínima e seu desenvolvimento para outros elementos do tempo e outras localidades.
Resumo:
Esta tese apresenta o desenvolvimento conceitual, estimação de parâmetros e aplicação empírica de um Modelo de Risco de Portfólio cujo objetivo é realizar previsões da distribuição estatística da perda de crédito em carteiras de crédito ao consumidor. O modelo proposto é adaptado às características do crédito ao consumidor e ao mercado brasileiro, podendo ser aplicado com dados atualmente disponíveis para as Instituições Financeiras no mercado brasileiro. São realizados testes de avaliação da performance de previsão do modelo e uma comparação empírica com resultados da aplicação do Modelo CreditRisk+.
Resumo:
A presente dissertação analisa o erro de projeção dos analistas de investimentos do sell side, definido como a diferença entre o consenso das projeções dos analistas e o resultado reportado pela empresa. O tamanho do erro de projeção é uma medida da qualidade das projeções dos analistas de um determinado mercado de capitais. Uma vasta literatura acadêmica mostra que uma melhora na qualidade das projeções dos analistas, medida através de uma diminuição do tamanho do erro de projeção, está relacionada com a redução da assimetria de informação e com um aumento do valor de mercado das empresas. São testadas duas regressões, nas quais características das empresas, como setor, tamanho, endividamento e variabilidade do lucro, e características do ambiente de informação da empresa, como listagem de ADR, número de analistas que acompanham a empresa e convergência das projeções, são testadas contra duas métricas do erro de projeção, acurácia e viés. Nossas hipóteses são que existem fatores que influenciam de maneira significativa o tamanho do erro de projeção (acurácia) e o viés das projeções (viés). Estas hipóteses foram confirmadas, isto é, nossas regressões apresentaram pelo menos um fator que se mostrou significativo estatisticamente para influenciar o tamanho do erro de projeção (hipóteses H1 e H2) ou o seu viés (hipótese H3). Entretanto, os resultados mostram que vários fatores que se mostram significativos em testes conduzidos em mercados desenvolvidos – tais como tamanho, endividamento e variabilidade do lucro – não se mostraram significativos no mercado brasileiro. Por outro lado, os fatores relacionados com o resultado do ano projetado ou do ano anterior se mostraram fortemente significativos. Acreditamos que os resultados podem ser explicados de três maneiras: 1) ou a capacidade de adicionar valor dos analistas em relação a modelos estatísticos de projeção é muito pequena, devido à sua falta de habilidade; ou 2) a instabilidade macroeconômica é tão grande domina todos os outros fatores que poderiam influenciar o tamanho do erro de projeção; ou 3) os resultados das empresas nos mercados desenvolvidos são tão administrados, isto é, tão estáveis, que permitem que fatores mais sutis como o tamanho, o nível de endividamento e a variabilidade do lucro se tornem significativos. Esta dissertação não permite distinguir qual das explicações é a correta. Uma de suas limitações é não incluir variáveis referentes à habilidade e experiência dos analistas e, também, variáveis relacionadas a fatores como governança corporativa e disclosure de informações. Em uma linha de pesquisa muito extensa nos países desenvolvidos, mas praticamente inexistente no Brasil, esperamos que estudos futuros supram estas lacunas e nos permitam entender melhor a questão da qualidade das projeções de resultados no contexto brasileiro.
Resumo:
Aparentemente existe uma anomalia no mercado de ações, onde é possível prever excessos de retomo das ações baseando-se em dados passados de divulgação de lucro. Este fenômeno é estatisticamente significante e parece não ser um artefato de amostragem ou metodologia, mas de uma ineficiência de mercado. Estudos mostram uma tendência dos excessos de retornos acumulados das ações se movimentarem na direção da surpresa de lucro, e este movimento se estende por meses após a data de divulgação de lucro trimestral. Neste trabalho mostro que este fenômeno ocorre também no Brasil, mesmo utilizando uma amostra com especificidades do mercado brasileiro e utilizando dados de expectativas de lucro de analistas financeiros no lugar de previsão estatística.
Resumo:
Este estudo compara previsões de volatilidade de sete ações negociadas na Bovespa usando 02 diferentes modelos de volatilidade realizada e 03 de volatilidade condicional. A intenção é encontrar evidências empíricas quanto à diferença de resultados que são alcançados quando se usa modelos de volatilidade realizada e de volatilidade condicional para prever a volatilidade de ações no Brasil. O período analisado vai de 01 de Novembro de 2007 a 30 de Março de 2011. A amostra inclui dados intradiários de 5 minutos. Os estimadores de volatilidade realizada que serão considerados neste estudo são o Bi-Power Variation (BPVar), desenvolvido por Barndorff-Nielsen e Shephard (2004b), e o Realized Outlyingness Weighted Variation (ROWVar), proposto por Boudt, Croux e Laurent (2008a). Ambos são estimadores não paramétricos, e são robustos a jumps. As previsões de volatilidade realizada foram feitas através de modelos autoregressivos estimados para cada ação sobre as séries de volatilidade estimadas. Os modelos de variância condicional considerados aqui serão o GARCH(1,1), o GJR (1,1), que tem assimetrias em sua construção, e o FIGARCH-CHUNG (1,d,1), que tem memória longa. A amostra foi divida em duas; uma para o período de estimação de 01 de Novembro de 2007 a 30 de Dezembro de 2010 (779 dias de negociação) e uma para o período de validação de 03 de Janeiro de 2011 a 31 de Março de 2011 (61 dias de negociação). As previsões fora da amostra foram feitas para 1 dia a frente, e os modelos foram reestimados a cada passo, incluindo uma variável a mais na amostra depois de cada previsão. As previsões serão comparadas através do teste Diebold-Mariano e através de regressões da variância ex-post contra uma constante e a previsão. Além disto, o estudo também apresentará algumas estatísticas descritivas sobre as séries de volatilidade estimadas e sobre os erros de previsão.
Resumo:
Este trabalho tem por objetivo avaliar para o caso brasileiro uma das mais importantes propriedades esperadas de um núcleo: ser um bom previsor da inflação plena futura. Para tanto, foram utilizados como referência para comparação dois modelos construídos a partir das informações mensais do IPCA e seis modelos VAR referentes a cada uma das medidas de núcleo calculadas pelo Banco Central do Brasil. O desempenho das previsões foi avaliado pela comparação dos resultados do erro quadrático médio e pela aplicação da metodologia de Diebold-Mariano (1995) de comparação de modelos. Os resultados encontrados indicam que o atual conjunto de medidas de núcleos calculado pelo Banco Central não atende pelos critérios utilizados neste trabalho a essa característica desejada.
Resumo:
2016
Resumo:
Com cada vez mais intenso desenvolvimento urbano e industrial, atualmente um desafio fundamental é eliminar ou reduzir o impacto causado pelas emissões de poluentes para a atmosfera. No ano de 2012, o Rio de Janeiro sediou a Rio +20, a Conferência das Nações Unidas sobre Desenvolvimento Sustentável, onde representantes de todo o mundo participaram. Na época, entre outros assuntos foram discutidos a economia verde e o desenvolvimento sustentável. O O3 troposférico apresenta-se como uma variável extremamente importante devido ao seu forte impacto ambiental, e conhecer o comportamento dos parâmetros que afetam a qualidade do ar de uma região, é útil para prever cenários. A química das ciências atmosféricas e meteorologia são altamente não lineares e, assim, as previsões de parâmetros de qualidade do ar são difíceis de serem determinadas. A qualidade do ar depende de emissões, de meteorologia e topografia. Os dados observados foram o dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), óxidos de nitrogênio (NOx), monóxido de carbono (CO), ozônio (O3), velocidade escalar vento (VEV), radiação solar global (RSG), temperatura (TEM), umidade relativa (UR) e foram coletados através da estação móvel de monitoramento da Secretaria do Meio Ambiente (SMAC) do Rio de Janeiro em dois locais na área metropolitana, na Pontifícia Universidade Católica (PUC-Rio) e na Universidade do Estado do Rio de Janeiro (UERJ) no ano de 2011 e 2012. Este estudo teve três objetivos: (1) analisar o comportamento das variáveis, utilizando o método de análise de componentes principais (PCA) de análise exploratória, (2) propor previsões de níveis de O3 a partir de poluentes primários e de fatores meteorológicos, comparando a eficácia dos métodos não lineares, como as redes neurais artificiais (ANN) e regressão por máquina de vetor de suporte (SVM-R), a partir de poluentes primários e de fatores meteorológicos e, finalmente, (3) realizar método de classificação de dados usando a classificação por máquina de vetor suporte (SVM-C). A técnica PCA mostrou que, para conjunto de dados da PUC as variáveis NO, NOx e VEV obtiveram um impacto maior sobre a concentração de O3 e o conjunto de dados da UERJ teve a TEM e a RSG como as variáveis mais importantes. Os resultados das técnicas de regressão não linear ANN e SVM obtidos foram muito próximos e aceitáveis para o conjunto de dados da UERJ apresentando coeficiente de determinação (R2) para a validação, 0,9122 e 0,9152 e Raiz Quadrada do Erro Médio Quadrático (RMECV) 7,66 e 7,85, respectivamente. Quanto aos conjuntos de dados PUC e PUC+UERJ, ambas as técnicas, obtiveram resultados menos satisfatórios. Para estes conjuntos de dados, a SVM mostrou resultados ligeiramente superiores, e PCA, SVM e ANN demonstraram sua robustez apresentando-se como ferramentas úteis para a compreensão, classificação e previsão de cenários da qualidade do ar
Resumo:
A análise das séries temporais de valores inteiros tornou-se, nos últimos anos, uma área de investigação importante, não só devido à sua aplicação a dados de contagem provenientes de diversos campos da ciência, mas também pelo facto de ser uma área pouco explorada, em contraste com a análise séries temporais de valores contínuos. Uma classe que tem obtido especial relevo é a dos modelos baseados no operador binomial thinning, da qual se destaca o modelo auto-regressivo de valores inteiros de ordem p. Esta classe é muito vasta, pelo que este trabalho tem como objectivo dar um contributo para a análise estatística de processos de contagem que lhe pertencem. Esta análise é realizada do ponto de vista da predição de acontecimentos, aos quais estão associados mecanismos de alarme, e também da introdução de novos modelos que se baseiam no referido operador. Em muitos fenómenos descritos por processos estocásticos a implementação de um sistema de alarmes pode ser fundamental para prever a ocorrência de um acontecimento futuro. Neste trabalho abordam-se, nas perspectivas clássica e bayesiana, os sistemas de alarme óptimos para processos de contagem, cujos parâmetros dependem de covariáveis de interesse e que variam no tempo, mais concretamente para o modelo auto-regressivo de valores inteiros não negativos com coeficientes estocásticos, DSINAR(1). A introdução de novos modelos que pertencem à classe dos modelos baseados no operador binomial thinning é feita quando se propõem os modelos PINAR(1)T e o modelo SETINAR(2;1). O modelo PINAR(1)T tem estrutura periódica, cujas inovações são uma sucessão periódica de variáveis aleatórias independentes com distribuição de Poisson, o qual foi estudado com detalhe ao nível das suas propriedades probabilísticas, métodos de estimação e previsão. O modelo SETINAR(2;1) é um processo auto-regressivo de valores inteiros, definido por limiares auto-induzidos e cujas inovações formam uma sucessão de variáveis independentes e identicamente distribuídas com distribuição de Poisson. Para este modelo estudam-se as suas propriedades probabilísticas e métodos para estimar os seus parâmetros. Para cada modelo introduzido, foram realizados estudos de simulação para comparar os métodos de estimação que foram usados.
Resumo:
Tendo por objectivo apresentar o desenvolvimento de um sistema de informação associado a um caso concreto do sector económico - turismo, o presente artigo resulta do desenvolvimento metodológico de uma componente do projecto de investigação científica denominado IMPACTUR - Indicadores de Monitorização e Previsão da Actividade Turística, sendo este beneficiário da parceria estabelecida entre a Direcção-Geral do Turismo de Portugal e a Universidade do Algarve / Centro Internacional de Investigação em Território e Turismo, aos quais os autores agradecem o apoio concedido. Os SI aplicados ao turismo permitem a criação de ferramentas que possibilitam aos decisores adquirir aquela pequena vantagem essencial para serem os melhores. O sistema de informação IMPACTUR é uma dessas ferramentas, inovadora no panorama português e internacional, a qual disponibiliza informação estatística on-line sobre turismo, em formato electrónico, através de um Web Site acessível a todos os profissionais e investigadores do turismo.
Resumo:
Dissertação apresentada ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Logística Orientada por: Professora Doutora Patrícia Alexandra Gregório Ramos
Resumo:
As empresas nacionais deparam-se com a necessidade de responder ao mercado com uma grande variedade de produtos, pequenas séries e prazos de entrega reduzidos. A competitividade das empresas num mercado global depende assim da sua eficiência, da sua flexibilidade, da qualidade dos seus produtos e de custos reduzidos. Para se atingirem estes objetivos é necessário desenvolverem-se estratégias e planos de ação que envolvem os equipamentos produtivos, incluindo: a criação de novos equipamentos complexos e mais fiáveis, alteração dos equipamentos existentes modernizando-os de forma a responderem às necessidades atuais e a aumentar a sua disponibilidade e produtividade; e implementação de políticas de manutenção mais assertiva e focada no objetivo de “zero avarias”, como é o caso da manutenção preditiva. Neste contexto, o objetivo principal deste trabalho consiste na previsão do instante temporal ótimo da manutenção de um equipamento industrial – um refinador da fábrica de Mangualde da empresa Sonae Industria, que se encontra em funcionamento contínuo 24 horas por dia, 365 dias por ano. Para o efeito são utilizadas medidas de sensores que monitorizam continuamente o estado do refinador. A principal operação de manutenção deste equipamento é a substituição de dois discos metálicos do seu principal componente – o desfibrador. Consequentemente, o sensor do refinador analisado com maior detalhe é o sensor que mede a distância entre os dois discos do desfibrador. Os modelos ARIMA consistem numa abordagem estatística avançada para previsão de séries temporais. Baseados na descrição da autocorrelação dos dados, estes modelos descrevem uma série temporal como função dos seus valores passados. Neste trabalho, a metodologia ARIMA é utilizada para determinar um modelo que efetua uma previsão dos valores futuros do sensor que mede a distância entre os dois discos do desfibrador, determinando-se assim o momento ótimo da sua substituição e evitando paragens forçadas de produção por ocorrência de uma falha por desgaste dos discos. Os resultados obtidos neste trabalho constituem uma contribuição científica importante para a área da manutenção preditiva e deteção de falhas em equipamentos industriais.
Resumo:
Geralmente, as populações, incluindo aí os setores produtivos, planejam suas atividades pelo conhecimento antecipado das variações tanto da temperatura quanto da precipitação pluvial baseados nos ciclos anuais e sazonais conhecidos. Os benefícios, confiabilidade e utilização das previsões climáticas têm sido objeto de análise e discussão na comunidade científica mundial. O desenvolvimento e aplicação dessas previsões para determinadas partes de áreas extensas, atende, de forma mais satisfatória, aos anseios dos setores produtivos e a sociedade como um todo. O objetivo principal desse trabalho foi identificar regiões dos oceanos Atlântico e Pacífico, cuja Temperatura da Superfície do Mar (TSM) possa ser utilizada como preditor potencial em modelos estatísticos de previsão climática de temperaturas máxima e mínima em regiões homogêneas do Estado do Rio Grande do Sul. Este estudo foi desenvolvido com dados de temperaturas máxima e mínima de 40 estações meteorológicas, do Instituto Nacional de Meteorologia e, da Fundação Estadual de Pesquisas Agropecuárias para o período de 1913 a 1998 e dados de TSM em pontos de grade para o período de 1950 a 1998 do National Center for Environmental Prediction. Num tratamento preliminar dos dados, as séries tiveram suas falhas preenchidas utilizando um método de preenchimento, aqui chamado, de “método das correlações”. Com as séries completas, aplicou-se métodos de agrupamento, determinando 4 regiões homogêneas de temperaturas máxima e mínima para o Estado. Foi feito um estudo climatológico dessas regiões e determinadas as relações das temperaturas médias máxima e mínima, de cada uma com TSM dos Oceanos na grade definida. As regiões determinadas representaram bem a fisiografia do Estado e as regiões preditoras apresentaram correlações significativas tanto com a temperatura máxima, quanto com a mínima. Os meses com maior número de preditores, tanto para as temperatura máxima quanto para mínima, foi agosto e o de menor, julho. Correlações diferentes para regiões homogêneas distintas, justificou a utilização da regionalização neste trabalho.
Resumo:
Os primeiros estudos sobre previsão de falência foram elaborados por volta da década de 30. Entretanto, o assunto só ganhou impulso a partir da utilização de técnicas estatísticas, ao longo dos anos 60. No Brasil, os primeiros trabalhos sobre o assunto datam dos anos 70. A esse respeito, vale destacar que a técnica estatística empregada em grande parte destes estudos foi a análise discriminante linear multivariada. Na tentativa de contribuir para o tema, este trabalho se propõs a testar um modelo de previsão de concordatas de empresas de capital aberto, a partir da modelagem desenvolvida por Cox (1972). Esse modelo se diferencia daqueles estimados a partir de técnicas logit, probit e análise discriminante na medida em que fornece não apenas a probabilidade de que um determinado evento ocorra no futuro, mas também uma estimativa do tempo até sua ocorrência. A análise dos resultados demonstrou que é possível identificar, antecipadamente, o risco de concordata de uma empresa de capital aberto. Nesse sentido, acredita -se que o modelo de Cox possa ser utilizado como auxiliar na previsão de concordatas de companhias abertas operando na Bolsa de Valores de São Paulo – Bovespa.