995 resultados para Preservação de privacidade em mineração de regras de associação
Resumo:
2006
Resumo:
A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.
Resumo:
Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A extração de regras de associação (ARM - Association Rule Mining) de dados quantitativos tem sido pesquisa de grande interesse na área de mineração de dados. Com o crescente aumento das bases de dados, há um grande investimento na área de pesquisa na criação de algoritmos para melhorar o desempenho relacionado a quantidade de regras, sua relevância e a performance computacional. O algoritmo APRIORI, tradicionalmente usado na extração de regras de associação, foi criado originalmente para trabalhar com atributos categóricos. Geralmente, para usá-lo com atributos contínuos, ou quantitativos, é necessário transformar os atributos contínuos, discretizando-os e, portanto, criando categorias a partir dos intervalos discretos. Os métodos mais tradicionais de discretização produzem intervalos com fronteiras sharp, que podem subestimar ou superestimar elementos próximos dos limites das partições, e portanto levar a uma representação imprecisa de semântica. Uma maneira de tratar este problema é criar partições soft, com limites suavizados. Neste trabalho é utilizada uma partição fuzzy das variáveis contínuas, que baseia-se na teoria dos conjuntos fuzzy e transforma os atributos quantitativos em partições de termos linguísticos. Os algoritmos de mineração de regras de associação fuzzy (FARM - Fuzzy Association Rule Mining) trabalham com este princípio e, neste trabalho, o algoritmo FUZZYAPRIORI, que pertence a esta categoria, é utilizado. As regras extraídas são expressas em termos linguísticos, o que é mais natural e interpretável pelo raciocício humano. Os algoritmos APRIORI tradicional e FUZZYAPRIORI são comparado, através de classificadores associativos, baseados em regras extraídas por estes algoritmos. Estes classificadores foram aplicados em uma base de dados relativa a registros de conexões TCP/IP que destina-se à criação de um Sistema de Detecção de Intrusos.
Resumo:
Nos dias atuais, a maioria das operações feitas por empresas e organizações é armazenada em bancos de dados que podem ser explorados por pesquisadores com o objetivo de se obter informações úteis para auxílio da tomada de decisão. Devido ao grande volume envolvido, a extração e análise dos dados não é uma tarefa simples. O processo geral de conversão de dados brutos em informações úteis chama-se Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases). Uma das etapas deste processo é a Mineração de Dados (Data Mining), que consiste na aplicação de algoritmos e técnicas estatísticas para explorar informações contidas implicitamente em grandes bancos de dados. Muitas áreas utilizam o processo KDD para facilitar o reconhecimento de padrões ou modelos em suas bases de informações. Este trabalho apresenta uma aplicação prática do processo KDD utilizando a base de dados de alunos do 9 ano do ensino básico do Estado do Rio de Janeiro, disponibilizada no site do INEP, com o objetivo de descobrir padrões interessantes entre o perfil socioeconômico do aluno e seu desempenho obtido em Matemática na Prova Brasil 2011. Neste trabalho, utilizando-se da ferramenta chamada Weka (Waikato Environment for Knowledge Analysis), foi aplicada a tarefa de mineração de dados conhecida como associação, onde se extraiu regras por intermédio do algoritmo Apriori. Neste estudo foi possível descobrir, por exemplo, que alunos que já foram reprovados uma vez tendem a tirar uma nota inferior na prova de matemática, assim como alunos que nunca foram reprovados tiveram um melhor desempenho. Outros fatores, como a sua pretensão futura, a escolaridade dos pais, a preferência de matemática, o grupo étnico o qual o aluno pertence, se o aluno lê sites frequentemente, também influenciam positivamente ou negativamente no aprendizado do discente. Também foi feita uma análise de acordo com a infraestrutura da escola onde o aluno estuda e com isso, pôde-se afirmar que os padrões descobertos ocorrem independentemente se estes alunos estudam em escolas que possuem infraestrutura boa ou ruim. Os resultados obtidos podem ser utilizados para traçar perfis de estudantes que tem um melhor ou um pior desempenho em matemática e para a elaboração de políticas públicas na área de educação, voltadas ao ensino fundamental.
Resumo:
Ao se realizar estudo em qualquer área do conhecimento, quanto mais dados se dispuser, maior a dificuldade de se extrair conhecimento útil deste banco de dados. A finalidade deste trabalho é apresentar algumas ferramentas ditas inteligentes, de extração de conhecimento destes grandes repositórios de dados. Apesar de ter várias conotações, neste trabalho, irá se entender extração de conhecimento dos repositórios de dados a ocorrência combinada de alguns dados com freqüência e confiabilidade que se consideram interessantes, ou seja, na medida e que determinado dado ou conjunto de dados aparece no repositório de dados, em freqüência considerada razoável, outro dado ou conjunto de dados irá aparecer. Executada sobre repositórios de dados referentes a informações georreferenciadas dos alunos da UERJ (Universidade do Estado do Rio de Janeiro), irá se analisar os resultados de duas ferramentas de extração de dados, bem como apresentar possibilidades de otimização computacional destas ferramentas.
Resumo:
Qualquer assunto relacionado com a saúde é sempre um tema sensível, pela importância que tem junto da população, já que interage diretamente com o bem-estar das pessoas e, essencialmente, com a sensação de segurança que as estas pretendem ter na prestação dos cuidados básicos de saúde. Dados estatísticos mostram que a população está cada vez mais envelhecida, reforçando a importância da existência de bons centros hospitalares e de um bom Sistema Nacional de Saúde (SNS) (Plano Nacional de Saúde, 2010). Em Portugal, caso os pacientes necessitem de cuidados mais urgentes, podem recorrer ao Serviço de Urgências disponibilizado para toda a população através do SNS. No entanto, a gestão e planeamento deste serviço é complexa, dado este serviço ser frequentemente utilizado por pacientes que não necessitam de cuidados urgentes, levando a que os hospitais deixem de conseguir dar a resposta esperada, implicando a prestação por vezes um serviço de menor qualidade. Neste sentido, analisaram-se dados de um hospital do norte do país com o intuito de perceber o ponto de situação das urgências, de forma a encontrar padrões relevantes através da análise de clusters e de regras de associação. Começando pela análise de clusters, utilizaram-se apenas as variáveis que foram consideradas importantes para o problema, resultando da análise final 3 clusters. O primeiro cluster é constituído por elementos do sexo masculino de todas as idades, o segundo cluster por elementos do sexo masculino mais jovens e por elementos do sexo feminino até aos 60 anos e o terceiro cluster apenas por elementos do sexo feminino a partir dos 40 anos. No final verificaram-se muitas semelhanças entre os clusters 1 e 3, pois ambos continham os pacientes mais idosos, havendo um padrão comum no seu comportamento. No ano 2012 não houve registo de nenhuma epidemia, não havendo por isso nenhuma doença que se destacasse comparativamente às restantes. Concluiu-se também que na maior parte dos casos houve a necessidade de uma intervenção urgente (pulseira de cor Amarela), no entanto a maioria dos pacientes observados conseguiu regressar às suas habitações após as consultas nas Urgências Hospitalares, sem intervenções médicas adicionais. Relativamente às regras de associação, houve a necessidade de transformar e eliminar algumas variáveis que enviesassem o estudo. Após o processo da criação das regras de associação, percebeu-se que as regras eram muito similares entre si, apresentando uma maior confiança nas variáveis que apareceram em maior número (“Pacientes com pulseira de cor Amarela”, “distrito do Porto” ou “Alta Médica para a Residência”).
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
As várias opções para a realização de tratamentos estéticos conservadores permitem ao profissional a escolha de materiais e técnicas apropriados, que melhor se enquadrem nas características individuais de cada paciente e na realidade de seu consultório. No caso clínico apresentado, a técnica de clareamento dental em consultório com peróxido de hidrogênio a 35% (Total Blanc Office, DFL), ativado com luz híbrida LED/LASER e a microabrasão de esmalte com pasta de acido fosfórico a 37% e pedra pomes, foram associados. Os resultados com o clareamento em consultório são imediatos, de forma que o profissional dispõe de total controle sobre aplicação do gel clareador em áreas e dentes específicos. A microabrasão do esmalte é um tratamento simples e custo relativamente baixo, remove as manchas superficiais do esmalte com preservação de estrutura dental. No caso apresentado, a associação das duas técnicas proporcionou a obtenção de excelente resultado estético em apenas uma sessão de atendimento.
Resumo:
No presente trabalho foram utilizados modelos de classificação para minerar dados relacionados à aprendizagem de Matemática e ao perfil de professores do ensino fundamental. Mais especificamente, foram abordados os fatores referentes aos educadores do Estado do Rio de Janeiro que influenciam positivamente e negativamente no desempenho dos alunos do 9 ano do ensino básico nas provas de Matemática. Os dados utilizados para extrair estas informações são disponibilizados pelo Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira que avalia o sistema educacional brasileiro em diversos níveis e modalidades de ensino, incluindo a Educação Básica, cuja avaliação, que foi foco deste estudo, é realizada pela Prova Brasil. A partir desta base, foi aplicado o processo de Descoberta de Conhecimento em Bancos de Dados (KDD - Knowledge Discovery in Databases), composto das etapas de preparação, mineração e pós-processamento dos dados. Os padrões foram extraídos dos modelos de classificação gerados pelas técnicas árvore de decisão, indução de regras e classificadores Bayesianos, cujos algoritmos estão implementados no software Weka (Waikato Environment for Knowledge Analysis). Além disso, foram aplicados métodos de grupos e uma metodologia para tornar as classes uniformemente distribuídas, afim de melhorar a precisão dos modelos obtidos. Os resultados apresentaram importantes fatores que contribuem para o ensino-aprendizagem de Matemática, assim como evidenciaram aspectos que comprometem negativamente o desempenho dos discentes. Por fim, os resultados extraídos fornecem ao educador e elaborador de políticas públicas fatores para uma análise que os auxiliem em posteriores tomadas de decisão.