895 resultados para Preference inference
Resumo:
In this paper, we consider Preference Inference based on a generalised form of Pareto order. Preference Inference aims at reasoning over an incomplete specification of user preferences. We focus on two problems. The Preference Deduction Problem (PDP) asks if another preference statement can be deduced (with certainty) from a set of given preference statements. The Preference Consistency Problem (PCP) asks if a set of given preference statements is consistent, i.e., the statements are not contradicting each other. Here, preference statements are direct comparisons between alternatives (strict and non-strict). It is assumed that a set of evaluation functions is known by which all alternatives can be rated. We consider Pareto models which induce order relations on the set of alternatives in a Pareto manner, i.e., one alternative is preferred to another only if it is preferred on every component of the model. We describe characterisations for deduction and consistency based on an analysis of the set of evaluation functions, and present algorithmic solutions and complexity results for PDP and PCP, based on Pareto models in general and for a special case. Furthermore, a comparison shows that the inference based on Pareto models is less cautious than some other types of well-known preference model.
Resumo:
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
Resumo:
Bayesian phylogenetic analyses are now very popular in systematics and molecular evolution because they allow the use of much more realistic models than currently possible with maximum likelihood methods. There are, however, a growing number of examples in which large Bayesian posterior clade probabilities are associated with very short edge lengths and low values for non-Bayesian measures of support such as nonparametric bootstrapping. For the four-taxon case when the true tree is the star phylogeny, Bayesian analyses become increasingly unpredictable in their preference for one of the three possible resolved tree topologies as data set size increases. This leads to the prediction that hard (or near-hard) polytomies in nature will cause unpredictable behavior in Bayesian analyses, with arbitrary resolutions of the polytomy receiving very high posterior probabilities in some cases. We present a simple solution to this problem involving a reversible-jump Markov chain Monte Carlo (MCMC) algorithm that allows exploration of all of tree space, including unresolved tree topologies with one or more polytomies. The reversible-jump MCMC approach allows prior distributions to place some weight on less-resolved tree topologies, which eliminates misleadingly high posteriors associated with arbitrary resolutions of hard polytomies. Fortunately, assigning some prior probability to polytomous tree topologies does not appear to come with a significant cost in terms of the ability to assess the level of support for edges that do exist in the true tree. Methods are discussed for applying arbitrary prior distributions to tree topologies of varying resolution, and an empirical example showing evidence of polytomies is analyzed and discussed.
Resumo:
New DNA-based predictive tests for physical characteristics and inference of ancestry are highly informative tools that are being increasingly used in forensic genetic analysis. Two eye colour prediction models: a Bayesian classifier - Snipper and a multinomial logistic regression (MLR) system for the Irisplex assay, have been described for the analysis of unadmixed European populations. Since multiple SNPs in combination contribute in varying degrees to eye colour predictability in Europeans, it is likely that these predictive tests will perform in different ways amongst admixed populations that have European co-ancestry, compared to unadmixed Europeans. In this study we examined 99 individuals from two admixed South American populations comparing eye colour versus ancestry in order to reveal a direct correlation of light eye colour phenotypes with European co-ancestry in admixed individuals. Additionally, eye colour prediction following six prediction models, using varying numbers of SNPs and based on Snipper and MLR, were applied to the study populations. Furthermore, patterns of eye colour prediction have been inferred for a set of publicly available admixed and globally distributed populations from the HGDP-CEPH panel and 1000 Genomes databases with a special emphasis on admixed American populations similar to those of the study samples.
Resumo:
Dulce de leche samples available in the Brazilian market were submitted to sensory profiling by quantitative descriptive analysis and acceptance test, as well sensory evaluation using the just-about-right scale and purchase intent. External preference mapping and the ideal sensory characteristics of dulce de leche were determined. The results were also evaluated by principal component analysis, hierarchical cluster analysis, partial least squares regression, artificial neural networks, and logistic regression. Overall, significant product acceptance was related to intermediate scores of the sensory attributes in the descriptive test, and this trend was observed even after consumer segmentation. The results obtained by sensometric techniques showed that optimizing an ideal dulce de leche from the sensory standpoint is a multidimensional process, with necessary adjustments on the appearance, aroma, taste, and texture attributes of the product for better consumer acceptance and purchase. The optimum dulce de leche was characterized by high scores for the attributes sweet taste, caramel taste, brightness, color, and caramel aroma in accordance with the preference mapping findings. In industrial terms, this means changing the parameters used in the thermal treatment and quantitative changes in the ingredients used in formulations.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
Chagas disease is still a major public health problem in Latin America. Its causative agent, Trypanosoma cruzi, can be typed into three major groups, T. cruzi I, T. cruzi II and hybrids. These groups each have specific genetic characteristics and epidemiological distributions. Several highly virulent strains are found in the hybrid group; their origin is still a matter of debate. The null hypothesis is that the hybrids are of polyphyletic origin, evolving independently from various hybridization events. The alternative hypothesis is that all extant hybrid strains originated from a single hybridization event. We sequenced both alleles of genes encoding EF-1 alpha, actin and SSU rDNA of 26 T. cruzi strains and DHFR-TS and TR of 12 strains. This information was used for network genealogy analysis and Bayesian phylogenies. We found T. cruzi I and T. cruzi II to be monophyletic and that all hybrids had different combinations of T. cruzi I and T. cruzi II haplotypes plus hybrid-specific haplotypes. Bootstrap values (networks) and posterior probabilities (Bayesian phylogenies) of clades supporting the monophyly of hybrids were far below the 95% confidence interval, indicating that the hybrid group is polyphyletic. We hypothesize that T. cruzi I and T. cruzi II are two different species and that the hybrids are extant representatives of independent events of genome hybridization, which sporadically have sufficient fitness to impact on the epidemiology of Chagas disease.
Resumo:
To examine the effect of long lasting practice on pedal behavior in sport, we compared experienced adult soccer players and nonsoccer players on leg preference in motor tasks requiring general mobilization, soccer related mobilization, and body balance stabilization. We also evaluated performance asymmetry between the right and left legs in static and dynamic unipedal body balance based on center of pressure displacement, and correlated that with kg preference in balance stabilization tasks. Results revealed (a) a distinct leg preference between mobilization and stabilization tasks, which were significantly different between Mayers and nonplayers, (b) similar balance stability between the right and left legs, (c) greater stability of experienced players compared with nonplayers in static and dynamic balance, and (d) absence of a significant kg preference correlation with interlateral balance asymmetry. These results suggest an effect of extensive soccer skill practice on establishing leg preference for specific mobilization tasks and overall balance control.
Resumo:
Strength of leg peference and interlateral asymmetry in kinematics of kicking a ball for power were assessed in 6- to 10-year-old right-footed soccer player children. Leg preference was evaluated separately for three task categories: balance stabilization, soccer related mobilization, and general mobilization. The results showed that while both categories of mobilization tasks were featured by a consistent preference for the right leg, in stabilization tasks we observed lower scores and greater interindividual variability of leg preference. No effect of age was detected on leg preference. Analysis of peak foot velocity revealed similar increment of performance of the right and left legs from the ages 6-8 to 10 years. This finding supports the notion of stable Magnitude of interlateral asymmetries of performance during motor development. (C) 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 799-806, 2008.
Resumo:
The effect of lateralized practice on manual preference was investigated in right-handed children. Probing tasks required reaching and grasping a pencil at distinct eccentricities in the right and left hemifields (simple), and its transportation and insertion into a small hole (complex). During practice, the children experienced manipulative tasks different from that used for probing, using the left hand only. Results showed that before practice the children used almost exclusively the right hand in the right hemifield and at the midline position. Following lateralized practice frequency of use of the left hand increased in most lateral positions. A more evident effect of lateralized practice on shift of manual preference was detected in the complex task. Implications for lateralization of behavior in a developmental timescale are discussed on the basis of the proposition of amplification and diffusion of manual preference from lateralized practice. (C) 2010 Wiley Periodicals, Inc. Dev Psychobiol 52: 723-730, 2010.
Resumo:
The practicability of estimating directional wave spectra based on a vessel`s 1st order response has been recently addressed by several researchers. Different alternatives regarding statistical inference methods and possible drawbacks that could arise from their application have been extensively discussed, with an apparent preference for estimations based on Bayesian inference algorithms. Most of the results on this matter, however, rely exclusively on numerical simulations or at best on few and sparse full-scale measurements, comprising a questionable basis for validation purposes. This paper discusses several issues that have recently been debated regarding the advantages of Bayesian inference and different alternatives for its implementation. Among those are the definition of the best set of input motions, the number of parameters required for guaranteeing smoothness of the spectrum in frequency and direction and how to determine their optimum values. These subjects are addressed in the light of an extensive experimental campaign performed with a small-scale model of an FPSO platform (VLCC hull), which was conducted in an ocean basin in Brazil. Tests involved long and short crested seas with variable levels of directional spreading and also bimodal conditions. The calibration spectra measured in the tank by means of an array of wave probes configured the paradigm for estimations. Results showed that a wide range of sea conditions could be estimated with good precision, even those with somewhat low peak periods. Some possible drawbacks that have been pointed out in previous works concerning the viability of employing large vessels for such a task are then refuted. Also, it is shown that a second parameter for smoothing the spectrum in frequency may indeed increase the accuracy in some situations, although the criterion usually proposed for estimating the optimum values (ABIC) demands large computational effort and does not seem adequate for practical on-board systems, which require expeditious estimations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Recently, the development of industrial processes brought on the outbreak of technologically complex systems. This development generated the necessity of research relative to the mathematical techniques that have the capacity to deal with project complexities and validation. Fuzzy models have been receiving particular attention in the area of nonlinear systems identification and analysis due to it is capacity to approximate nonlinear behavior and deal with uncertainty. A fuzzy rule-based model suitable for the approximation of many systems and functions is the Takagi-Sugeno (TS) fuzzy model. IS fuzzy models are nonlinear systems described by a set of if then rules which gives local linear representations of an underlying system. Such models can approximate a wide class of nonlinear systems. In this paper a performance analysis of a system based on IS fuzzy inference system for the calibration of electronic compass devices is considered. The contribution of the evaluated IS fuzzy inference system is to reduce the error obtained in data acquisition from a digital electronic compass. For the reliable operation of the TS fuzzy inference system, adequate error measurements must be taken. The error noise must be filtered before the application of the IS fuzzy inference system. The proposed method demonstrated an effectiveness of 57% at reducing the total error based on considered tests. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
2. We documented the within-host distribution of two vector species that differ in transmission efficiency, the leafhoppers Draeculacephala minerva and Graphocephala atropunctata, and which are free to move throughout entirely caged alfalfa plants. The more efficient vector D. minerva fed preferentially at the base of the plant near the soil surface, whereas the less efficient G. atropunctata preferred overwhelming the top of the plant. 3. Next we documented X. fastidiosa heterogeneity in mechanically inoculated plants. Infection rates were up to 50% higher and mean bacterial population densities were 100-fold higher near the plant base than at the top or in the taproot. 4. Finally, we estimated transmission efficiency of the two leafhoppers when they were confined at either the base or top of inoculated alfalfa plants. Both vectors were inefficient when confined at the top of infected plants and were 20-60% more efficient when confined at the plant base. 5. These results show that vector transmission efficiency is determined by the interaction between leafhopper within-plant feeding behaviour and pathogen within-plant distribution. Fine-scale vector and pathogen overlap is likely to be a requirement generally for efficient transmission of vector-borne pathogens.