891 resultados para Prediction of occupational success.
Resumo:
Non-specific Occupational Low Back Pain (NOLBP) is a health condition that generates a high absenteeism and disability. Due to multifactorial causes is difficult to determine accurate diagnosis and prognosis. The clinical prediction of NOLBP is identified as a series of models that integrate a multivariate analysis to determine early diagnosis, course, and occupational impact of this health condition. Objective: to identify predictor factors of NOLBP, and the type of material referred to in the scientific evidence and establish the scopes of the prediction. Materials and method: the title search was conducted in the databases PubMed, Science Direct, and Ebsco Springer, between1985 and 2012. The selected articles were classified through a bibliometric analysis allowing to define the most relevant ones. Results: 101 titles met the established criteria, but only 43 metthe purpose of the review. As for NOLBP prediction, the studies varied in relation to the factors for example: diagnosis, transition of lumbar pain from acute to chronic, absenteeism from work, disability and return to work. Conclusion: clinical prediction is considered as a strategic to determine course and prognostic of NOLBP, and to determine the characteristics that increase the risk of chronicity in workers with this health condition. Likewise, clinical prediction rules are tools that aim to facilitate decision making about the evaluation, diagnosis, prognosis and intervention for low back pain, which should incorporate risk factors of physical, psychological and social.
Resumo:
The new Physiotherapy and Occupational Therapy programmes, based in the Faculty of Health Sciences, McMaster University (Hamilton, Ontario) are unique. The teaching and learning philosophies utilized are based on learner-centred and selfdirected learning theories. The 1991 admissions process of these programmes attempted to select individuals who would make highly qualified professionals and who would have the necessary skills to complete such unique programmes. In order to: 1 . learn more about the concept of self-directed learning and its related characteristics in health care professionals; 2. examine the relationship between various student characteristics - personal, learner and those assessed during the admissions process - and final course grades, and 3. determine which, if any, smdent characteristics could be considered predictors for success in learner-centred programmes requiring self-directed learning skills, a correlational research design was developed and carried out. Thirty Occupational Therapy and thirty Physiotherapy smdents were asked to complete 2 instruments - a questionnaire developed by the author and the Oddi Continuing Learning Inventory (Oddi, 1986). Course grades and ratings of students during the admissions process were also obtained. Both questionnaires were examined for reliability, and factor analyses were conducted to determine construct validity. Data obtained from the questionnaires, course grades and student ratings (from the admissions process) were analyzed and compared using the Contingency Co-efficient, the Pearson's product-moment correlation co-efficient, and the multiple regression analysis model. The research findings demonstrated a positive relationship (as identified by Contingency Coefficient or Pearson r values) between various course grades and the following personal and learner characteristics: field of smdy of highest level of education achieved, level of education achieved, sex, marital stams, motivation for completing the programmes, reasons for eru-oling in the programmes, decision to enrol in the programmes, employment history, preferred learning style, strong selfconcept and the identification of various components of the concept of self-directed learning. In most cases, the relationships were significant to the 0.01 or 0.(X)1 levels. Results of the multiple regression analyses demonstrated that several learner and admissions characteristic variables had R^ values that accounted for the largest proportion of the variance in several dependent variables. Thus, these variables could be considered predictors for success. The learner characteristics included: level of education and strong self-concept. The admissions characteristics included: ability to evaluate strengths, ability to give feedback, curiosity and creativity, and communication skills. It is recommended that research continue to be conducted to substantiate the relationships found between course grades and characteristic variables in more diverse populations. "Success in self-directed programmes" from the learner's perspective should also be investigated. The Oddi Continuing Learning Inventory should continue to be researched. Further research may lead to refinement or further development of the instrument, and may provide further insight into self-directed learner attributes. The concept of self-directed learning continues to be incorporated into educational programmes, and thus should continue to be explored.
Resumo:
"December 1988."
Resumo:
Using a sample of 339 university graduates from the University of Alicante (Spain) three years after completion of their studies, we studied the relationships between general intelligence (GI), personality traits, emotional intelligence (EI), academic performance, and occupational attainment and compared the results of conventional regression analysis with the results obtained from applying regression mixture models. The results reveal the influence of unobserved population heterogeneity (latent class) on the relationship between predictors and criteria and the improvement in the prediction obtained from applying regression mixture models compared to applying a conventional regression model.
Resumo:
Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.
Resumo:
A recurring feature of modern practice is occupational stress of project professionals, with both debilitating effects on the people concerned and indirectly affecting project success. Previous research outside the construction industry has involved the use of a psychology perceived stress questionnaire (PSQ) to measure occupational stress, resulting in the identification of one stressor – demand - and three sub-dimensional emotional reactions in terms of worry, tension and joy. The PSQ is translated into Chinese with a back translation technique and used in a survey of young construction cost professionals in China. Principal component analysis and confirmatory factor analysis are used to test the divisibility of occupational stress - little mentioned in previous research on stress in the construction context. In addition, structural equation modelling is used to assess nomological validity by testing the effects of the three dimensions on organizational commitment, the main finding of which is that lack of joy has the sole significant effect. The three-dimensional measurement framework facilitates the standardizing measurement of occupational stress. Further research will establish if the findings are also applicable in other settings and explore the relations between stress dimensions and other managerial concepts.
Resumo:
The present, paper deals with the CAE-based study Of impact of jacketed projectiles on single- and multi-layered metal armour plates using LS-DYNA. The validation of finite element modelling procedure is mainly based on the mesh convergence study using both shell and solid elements for representing single-layered mild steel target plates. It, is shown that the proper choice of mesh density and the strain rate-dependent material properties are essential for all accurate prediction of projectile residual velocity. The modelling requirements are initially arrived at by correlating against test residual velocities for single-layered mild steel plates of different depths at impact velocities in the ran.-c of approximately 800-870 m/s. The efficacy of correlation is adjudged, in terms of a 'correlation index', defined in the paper: for which values close to unity are desirable. The experience gained for single-layered plates is next; used in simulating projectile impacts on multi-layered mild steel target plates and once again a high degree of correlation with experimental residual velocities is observed. The study is repeated for single- and multi-layered aluminium target plates with a similar level of success in test residual velocity prediction. TO the authors' best knowledge, the present comprehensive study shows in particular for the first time that, with a. proper modelling approach, LS-DYNA can be used with a great degree of confidence in designing perforation-resistant single and multi-layered metallic armour plates.
Resumo:
Numerical simulation of separated flows in rocket nozzles is challenging because existing turbulence models are unable to predict it correctly. This paper addresses this issue with the Spalart-Allmaras and Shear Stress Transport (SST) eddy-viscosity models, which predict flow separation with moderate success. Their performances have been compared against experimental data for a conical and two contoured subscale nozzles. It is found that they fail to predict the separation location correctly, exhibiting sensitivity to the nozzle pressure ratio (NPR) and nozzle type. A careful assessment indicated how the model had to be tuned for better, consistent prediction. It is learnt that SST model's failure is caused by limiting of the shear stress inside boundary layer according to Bradshaw's assumption, and by over prediction of jet spreading rate. Accordingly, SST's coefficients were empirically modified to match the experimental wall pressure data. Results confirm that accurate RANS prediction of separation depends on the correct capture of the jet spreading rate, and that it is feasible over a wide range of NPRs by modified values of the diffusion coefficients in the turbulence model. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzers in industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO2 by cold pressing was performed
Resumo:
The potential of Raman spectroscopy for the determination of meat quality attributes has been investigated using data from a set of 52 cooked beef samples, which were rated by trained taste panels. The Raman spectra, shear force and cooking loss were measured and PLS used to correlate the attributes with the Raman data. Good correlations and standard errors of prediction were found when the Raman data were used to predict the panels' rating of acceptability of texture (R-2 = 0.71, Residual Mean Standard Error of Prediction (RMSEP)% of the mean (mu) = 15%), degree of tenderness (R-2 = 0.65, RMSEP% of mu = 18%), degree of juiciness (R-2 = 0.62, RMSEP% of mu = 16%), and overall acceptability (R-2 = 0.67, RMSEP% of mu = 11%). In contrast, the mechanically determined shear force was poorly correlated with tenderness (R-2 = 0.15). Tentative interpretation of the plots of the regression coefficients suggests that the alpha-helix to beta-sheet ratio of the proteins and the hydrophobicity of the myofibrillar environment are important factors contributing to the shear force, tenderness, texture and overall acceptability of the beef. In summary, this work demonstrates that Raman spectroscopy can be used to predict consumer-perceived beef quality. In part, this overall success is due to the fact that the Raman method predicts texture and tenderness, which are the predominant factors in determining overall acceptability in the Western world. Nonetheless, it is clear that Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of beef quality parameters.