896 resultados para Power factor control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of distributed reactive power control to improve the voltage profile of radial distribution feeders has been reported in literature by few authors. However, the multiple inverters injecting or absorbing reactive power across a distribution feeder may introduce control interactions and/or voltage instability. Such controller interactions can be alleviated if the inverters are allowed to operate on voltage droop. First, the paper demonstrates that a linear shallow droop line can maintain the steady state voltage profile close to reference, up to a certain level of loading. Then, impacts of the shallow droop line control on line losses and line power factors are examined. Finally, a piecewise linear droop line which can achieve reduced line losses and close to unity power factor at the feeder source is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of the harmonic neutralised shunt Converter Compensator as a practical means of reactive power compensation in power transmission systems has cleared ground for wider application of this type of equipment. An experimental 24-pulse voltage sourced convector has been successfully applied in controlling the terminal power factor of a 1.5kW, 240V three phase cage rotor induction motor, whose winding has been used in place of the usual phase shifting transformers. To achieve this, modifications have been made to the conventional stator winding of the induction machine. These include an unconventional phase spread and facilitation of compensator connections to selected tapping points between stator coils to give a three phase winding with a twelve phase connection to the twenty four pulse converter. Theoretical and experimental assessments of the impact of these modifications and attachment of the compensator have shown that there is a slight reduction in the torque developed at a given slip and in the combined system efficiency. There is also an increase in the noise level, also a consequence of the harmonics. The stator leakage inductance gave inadequate coupling reactance between the converter and the effective voltage source, necessitating the use of external inductors in each of the twelve phases. The terminal power factor is fully controllable when the induction machine is used either as a motor or as a generator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the analysis, design, simulation, and experimental results for a high frequency high Power-Factor (PF) AC (Alternate Current) voltage regulator, using a Sepic converter as power stage. The control technique employed to impose a sinusoidal input current waveform, with low Total Harmonic Distortion (THD), is the sinusoidal variable hysteresis control. The control technique was implemented in a FPGA (Field Programmable Gate Array) device, using a Hardware Description Language (VHDL). Through the use of the proposed control technique, the AC voltage regulator performs active power-factor correction, and low THD in the input current, for linear and non-linear loads, satisfying the requirements of the EEC61000-3-2 standards. Experimental results from an example prototype, designed for 300W of nominal output power, 50kHz (switching frequency), and 127Vrms of nominal input and output voltages, are presented in order to validate the proposed AC regulator. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Switching mode power supplies (SMPS) are subject to low power factor and high harmonic distortions. Active power-factor correction (APFC) is a technique to improve the power factor and to reduce the harmonic distortion of SMPSs. However, this technique results in double frequency output voltage variation which can be reduced by using a large output capacitance. Using large capacitors increases the cost and size of the converter. Furthermore, the capacitors are subject to frequent failures mainly caused by evaporation of the electrolytic solution which reduce the converter reliability. This thesis presents an optimal control method for the input current of a boost converter to reduce the size of the output capacitor. The optimum current waveform as a function of weighing factor is found by using the Euler Lagrange equation. A set of simulations are performed to determine the ideal weighing which gives the lowest possible output voltage variation as the converter still meets the IEC-61000-3-2 class-A harmonics requirements with a power factor of 0.8 or higher. The proposed method is verified by the experimental work. A boost converter is designed and it is run for different power levels, 100 W, 200 W and 400 W. The desired output voltage ripple is 10 V peak to peak for the output voltage of 200 Vdc. This ripple value corresponds to a ± 2.5% output voltage ripple. The experimental and the simulation results are found to be quite matching. A significant reduction in capacitor size, as high as 50%, is accomplished by using the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel single-phase high-power-factor (HPF) pulsewidth-modulated (PWM) boost rectifier featuring soft commutation of the active switches at zero current (ZC), It incorporates the most desirable properties of conventional PWM and soft-switching resonant techniques.The input current shaping is achieved with average current mode control and continuous inductor current mode.This new PWM converter provides ZC turn on and turn off of the active switches, and it is suitable for high-power applications employing insulated gate bipolar transistors (IGBT's),The principle of operation, the theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400-Vdc output voltage are presented. The measured efficiency and the power factor were 96.2% and 0.99%, respectively, with an input current total harmonic distortion (THD) equal to 3.94%, for an input voltage with THD equal to 3.8%, at rated load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces novel zero-current-switching (ZCS) pulsewidth-modulated (PWM) preregulators based on a new soft-commutation cell, suitable for insulated gate bipolar transistor applications. The active switches in these proposed rectifiers turn on in zero current and turn off in zero current-zero voltage. In addition, the diodes turn on in zero voltage and their reverse-recovery effects over the active switches are negligible. Moreover, based on the proposed cell, an entire family of de-to-de ZCS-PWM converters can be generated, providing conditions to obtain naturally isolated converters, for example, derived buck-boost, Sepic. and Zeta converters. The novel ac-to-dc ZCS-PWM boost and Zeta preregulators are presented in order to verify the operation of this soft-commutation cell, In order to minimize the harmonic contents of the input current, increasing the ac power factor, the average-current-mode control is used, obtaining preregulators with ac power factor near unity and high efficiency at wide load range. The principle of operation, theoretical analysis, design example, and experimental results from test units for the novel preregulators are presented. The new boost preregulator was designed to nominal values of 1.6 kW output power, 220 V(rms) input voltage, 400 V(dc) output voltage, and operating at 20 kHz. The measured efficiency and power factor of the new ZCS-PWM boost preregulator were 96.7% and 0,99, respectively, with an input current total harmonic distortion (THD) equal to 3.42% for an input voltage with THD equal to 1.61%, at rated load, the new ZCS-PWM Zeta preregulator was designed to voltage step-down operation, and the experimental results were obtained from a laboratory prototype rated at 500 W, 220 V(rm), input voltage, 110 V(dc) output voltage, and operating at 50 kHz. The measured efficiency of the new ZCS-PWM Zeta preregulator is approximately 96.9% and the input power factor is 0.98, with an input current THD equal to 19.07% while the input voltage THD is equal to 1.96%, at rated load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a dimmable electronic ballast designed for multiple fluorescent lamps applications. A ZCS-PWM Boost rectifier and a classical resonant Full-Bridge inverter compose this new electronic ballast, providing conditions for the obtaining of high input power-factor, and soft-switching processes for all semiconductor devices employed in the structure. The instantaneous average input current control technique is employed in the Boost rectifier. Concerning the Full-Bridge inverter, it is controlled by the imposition of phase-shift in the current processed through the sets of resonant filters + lamps, according to an adaptation in a specially designed control IC, called IR2159. Experimental results are presented in order to validate the analyses developed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors present an offline switching power supply with multiple isolated outputs and unity power factor with the use of only one power processing stage, based on the DC-DC SEPIC (single ended primary inductance converter) modulated by variable hysteresis current control. The principle of operation, the theoretical analysis, the design procedure, an example, and simulation results are presented. A laboratory prototype, rated at 160 W, operating at a maximum switching frequency of 100 kHz, with isolated outputs rated at +5 V/15 A -5 V/1 A, +12 V/6 A and -12 V/1 A, has been built given an input power factor near unity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the analysis and the design of a peak-current-controlled high-power-factor boost rectifier, with slope compensation, operating at constant frequency. The input current shaping is achieved, with continuous inductor current mode, with no multiplier to generate a current reference. The resulting overall circuitry is very simple, in comparison with the average-current-controlled boost rectifier. Experimental results are presented, taken from a laboratory prototype rated at 370 W and operating at 67 kHz. The measured power factor was 0.99, with a input current THD equal to 5.6%, for an input voltage THD equal to 2.26%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new high power factor three-phase rectifier based on a Y-connected differential autotransformer with reduced kVA and 18-pulse input current followed by three DC-DC boost converters. The topology provides a regulated output voltage and natural three-phase input power factor correction. The lowest input current harmonic components are the 17th and the 19th. Three boost converters, with constant input currents and regulated parallel connected output voltages are used to process 4kW each one. Analytical results from Fourier analyses of winding currents and the vector diagram of winding voltages are presented. Simulation results to verify the proposed concept and experimental results are shown in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel isolated electronic ballast for multiple fluorescent lamps, featuring high power-factor, and high efficiency. Two stages compose this new electronic ballast, namely, a new voltage step-down isolated Sepic rectifier, and a classical resonant Half-Bridge inverter. The new isolated Sepic rectifier is obtained from a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The average-current control technique is used in this preregulator stage in order to provide low phase displacement and low Total-Harmonic-Distortion (THD) at input current, resulting in high power-factor, and attending properly IEC 61000-3-2 standards. The resonant Half-Bridge inverter performs Zero-Voltage-Switching (ZVS), providing conditions for the obtaining of overall high efficiency. It is developed a design example for the new isolated electronic ballast rated at 200W output power, 220Vrms input voltage, 115Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Finally, experimental results are presented in order to verify the developed analysis. The THD at input current is equal to 5.25%, for an input voltage THD equal to 1.63%, and the measured overall efficiency is about 88.25%, at rated load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new pre-regulator boost operating in the boundary area between the continuous and discontinuous conduction modes of the boost inductor current, where the switches and boost diode performing zero-current commutations during its turn-off, eliminating the disadvantages related to the reverse recovery losses and electromagnetic interference problems of the boost diode when operating in the continuous conduction mode. Additionally, the interleaving technique is applied in the power cell, providing a significant input current ripple reduction. It should be noticed that the main objective of this paper is to present a complete modeling for the converter operating in the critical conduction mode, allowing an improved design procedure for interleaved techniques with high input power factor, a complete dynamic analysis of the structure, and the possibility of implementing digital control techniques in closed loop.