4 resultados para Potentiometers
Resumo:
An all-in-one version of a capacitively coupled contactless conductivity detector is introduced. The absence of moving parts (potentiometers and connectors) makes it compact (6.5 cm(3)) and robust. A local oscillator, working at 1.1 MHz, was optimized to use capillaries of id from 20 to 100 lam. Low noise circuitry and a high-resolution analog-to-digital converter (ADC) (21 bits effective) grant good sensitivities for capillaries and background electrolytes currently used in capillary electrophoresis. The fixed frequency and amplitude of the signal generator is a drawback that is compensated by the steady calibration curves for conductivity. Another advantage is the possibility of determining the inner diameter of a capillary by reading the ADC when air and subsequently water flow through the capillary. The difference of ADC reading may be converted into the inner diameter by a calibration curve. This feature is granted by the 21-bit ADC, which eliminates the necessity of baseline compensation by hardware. In a typical application, the limits of detection based on the 3 sigma criterion (without baseline filtering) were 0.6, 0.4, 0.3, 0.5, 0.6, and 0.8 mu mol/L for K(+), Ba(2+), Ca(2+), Na(+), Mg(2+), and Li(+), respectively, which is comparable to other high-quality implementations of a capacitively coupled contactless conductivity detector.
Resumo:
A partially hydrolyzed polyacrylamide (HPAM) is a copolymer composed of acrylamide and sodium acrylate. Due to its wide range of applications there are different methods for its quantification and characterization in solution systems. Evaluation of C* is important to describe the transition from dilute to semi-dilute, behavior, when the solution will have its characteristic viscosity at concentrations above C*. This dissertation describes the determination of the critical concentration of overlap C* by potentiometry of partially hydrolyzed polyacrylamide - HPAM under acidic conditions. Based on the law of mass action and the proper treatment of the constant of aggregate formation, polymer molecular weight, degree of polymerization and hydrolysis were calculated. The inflection point was determined by the intersection of the resulting equation and mathematical development, statistically satisfy the experimental points relating the number of moles of monomers (n), equilibrium constant of formation of the entanglements (K*), pH, C* and acidity constant of the polymer (Ka). The viscometric parameters of C* showed a percentage difference compared to potentiometers. The results for the determination of C*, and degree of copolymerization molar mass proved to be a simple alternative for the characterization of polymers with protonated monomers and water soluble
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
This work proposes the use of a simple voltage divider circuit composed by one potentiometer and one resistor to simulate the behavior of the electrical output signal of linear and nonlinear sensors. It is a low cost way to implement practical experiments in classroom and it also enables the analysis of interesting topics of electricity. This work induces naturally to a class guide where students can build and characterize a voltage divider to explore several concepts about sensors output signal. As the result of this teaching activity it is expected that students understand fundamentals of voltage divider, potentiometer operation, fundamental sensor characteristics, transfer function, and, besides, associate directly concepts of physics and mathematics with a practical approach.