916 resultados para Potent Reversible Inhibitors
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
Cathepsin V is a lysosomal cysteine peptidase highly expressed in thymus, testis and corneal epithelium. Eleven acridone alkaloids were isolated from Swinglea glutinosa (Bl.) Merr. (Rutaceae), with eight of them being identified as potent and reversible inhibitors of cathepsin V (IC(50) values ranging from 1.2 to 3.9 mu M). Detailed mechanistic characterization of the effects of these compounds on the cathepsin V-catalyzed reaction showed clear competitive inhibition with respect to substrate, with dissociation constants (K(i)) in the low micromolar range (2, K(i) = 1.2 mu M; 6, K(i) = 1.0 mu M; 7, K(i) = 0.2 mu M; and 11, K(i) = 1.7 mu M). Molecular modeling studies provided important insight into the structural basis for binding affinity and enzyme inhibition. Experimental and computational approaches, including biological evaluation, mode of action assessment and modeling studies were successfully employed in the discovery of a small series of acridone alkaloid derivatives as competitive inhibitors of catV. The most potent inhibitor (7) has a K(i) value of 200 nM. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A series of cis-configured epoxides and aziridines containing hydrophobic moieties and amino acid esters,were synthesized as new potential inhibitors of the secreted aspartic protease 2 (SAP2) of Candida albicans. Enzyme assays revealed the N- benzyl-3-phenyl-substituted aziridines 11 and 17 as the most potent inhibitors, with second-order inhibition, rate constants (k(2)) between 56000 and 12-1000 M-1 min(-1). The compounds were shown to be pseudo-irreversible dual-mode, inhibitors: the interm ediate esterified enzyme resulting from nucleophilic ring opening was hydrolyzed and yielded amino alcohols as transition state-mimetic reversible inhibitors. The results of docking studies with the ring-closed aziridine forms of the inhibitors suggest binding modes mainly dominated by hydrophobic interactions with the S1, S1' S2, and S2' subsites of the protease, and docking studies with the processed amino alcohol forms predict additional hydrogen bonds of the new hydroxy group to the active site Asp residues. C. albicans growth assays showed the compounds to decrease SAP2-dependent growth while not affecting SAP2-independent growth.
Resumo:
A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species.
Resumo:
Few reported inhibitors of secretory phospholipase A(2) enzymes inhibit the IIa human isoform (hnpsPLA(2)-IIa) noncovalently at submicromolar concentrations. Herein, the simple chiral precursor D-tyrosine was derivastised to give a series of potent new inhibitors of hnpsPLA(2)-IIa. A 2.2-Angstrom crystal structure shows an inhibitor bound in the active site of the enzyme, chelated to a Ca2+ ion through carboxylate and amide oxygen atoms, H bonded through an amide NH group to His48, with multiple hydrophobic contacts and a T-shaped aromatic-group-His6 interaction. Antiinflammatory activity is also demonstrated for two compounds administered orally to rats.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Resumo:
Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.
Resumo:
Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets. Some of these targets have been known for years while other new targets and theories have emerged more recently. Cholinesterase inhibitors are the major class of drugs currently used for the symptomatic treatment of Alzheimer’s disease. In the Alzheimer’s disease brain there is a deficit of acetylcholine and an impairment in signal transmission. Acetylcholinesterase has therefore been the main target as this is the main enzyme hydrolysing acetylcholine and ending neurotransmission. It is believed that by inhibiting acetylcholinesterase the cholinergic signalling can be enhanced and the cognitive symptoms that arise in Alzheimer’s disease can be improved. Butyrylcholinesterase, the second enzyme of the cholinesterase family, has more recently attracted interest among researchers. Its function is still not fully known, but it is believed to play a role in several diseases, one of them being Alzheimer’s disease. In this contribution the aim has primarily been to identify butyrylcholinesterase inhibitors to be used as drug molecules or molecular probes in the future. Both synthetic and natural compounds in diverse and targeted screening libraries have been used for this purpose. The active compounds have been further characterized regarding their potencies, cytotoxicity, and furthermore, in two of the publications, the inhibitors ability to also inhibit Aβ aggregation in an attempt to discover bifunctional compounds. Further, in silico methods were used to evaluate the binding position of the active compounds with the enzyme targets. Mostly to differentiate between the selectivity towards acetylcholinesterase and butyrylcholinesterase, but also to assess the structural features required for enzyme inhibition. We also evaluated the compounds, active and non-active, in chemical space using the web-based tool ChemGPS-NP to try and determine the relevant chemical space occupied by cholinesterase inhibitors. In this study, we have succeeded in finding potent butyrylcholinesterase inhibitors with a diverse set of structures, nine chemical classes in total. In addition, some of the compounds are bifunctional as they also inhibit Aβ aggregation. The data gathered from all publications regarding the chemical space occupied by butyrylcholinesterase inhibitors we believe will give an insight into the chemically active space occupied by this type of inhibitors and will hopefully facilitate future screening and result in an even deeper knowledge of butyrylcholinesterase inhibitors.
Resumo:
Vascular adhesion protein-1 (VAP-1), which belongs to the copper amine oxidases (CAOs), is a validated drug target in inflammatory diseases. Inhibition of VAP-1 blocks the leukocyte trafficking to sites of inflammation and alleviates inflammatory reactions. In this study, a novel set of potent pyridazinone inhibitors is presented together with their X-ray structure complexes with VAP-1. The crystal structure of serum VAP-1 (sVAP-1) revealed an imidazole binding site in the active site channel and, analogously, the pyridazinone inhibitors were designed to bind into the channel. This is the first time human VAP-1 has been crystallized with a reversible inhibitor and the structures reveal detailed information of the binding mode on the atomic level. Similarly to some earlier studied inhibitors of human VAP-1, the designed pyridazinone inhibitors bind rodent VAP-1 with a lower affinity than human VAP-1. Therefore, we made homology models of rodent VAP-1 and compared human and rodent enzymes to determine differences that might affect the inhibitor binding. The comparison of the crystal structures of the human VAP-1 and the mouse VAP-1 homology model revealed key differences important for the species specific binding properties. In general, the channel in mouse VAP-1 is more narrow and polar than the channel in human VAP-1, which is wider and more hydrophobic. The differences are located in the channel leading to the active site, as well as, in the entrance to the active site channel. The information obtained from these studies is of great importance for the development and design of drugs blocking the activity of human VAP-1, as rodents are often used for in vivo testing of candidate drugs. In order to gain more insight into the selective binding properties of the different CAOs in one species a comprehensive evolutionary study of mammalian CAOs was performed. We found that CAOs can be classified into sub-families according to the residues X1 and X2 of the Thr/Ser-X1-X2-Asn-Tyr-Asp active site motif. In the phylogenetic tree, CAOs group into diamine oxidase, retina specific amine oxidase and VAP-1/serum amine oxidase clades based on the residue in the position X2. We also found that VAP-1 and SAO can be further differentiated based on the residue in the position X1. This is the first large-scale comparison of CAO sequences, which explains some of the reasons for the unique substrate specificities within the CAO family.
Resumo:
In previous studies, we identified promising anti-Trypanosoma cruzi cruzain inhibitors based on thiazolylhydrazones. To optimize this series, a number of medicinal chemistry directions were explored and new thiazolylhydrazones and thiosemicarbazones were thus synthesized. Potent cruzain inhibitors were identified, such as thiazolylhydrazones 3b and 3j, which exhibited IC(50) of 200-400 nM. Furthermore, molecular docking studies showed concordance with experimentally derived structure-activity relationships (SAR) data. In the course of this work, lead compounds exhibiting in vitro activity against both the epimastigote and trypomastigote forms of T. cruzi were identified and in vivo general toxicity analysis was subsequently performed. Novel SAR were documented, including the importance of the thiocarbonyl carbon attached to the thiazolyl ring and the direct comparison between thiosemicarbazones and thiazolylhydrazones. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We report herein the synthesis and trypanocidal profile of new (E)-cinnamic N-acylhydrazones (NAHs) designed by exploiting molecular hybridization between the potent cruzain inhibitors (E)-1-(benzo[d] 11,3)dioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one and (E)-3-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)-7-methoxy-2-naphthohydrazide. These derivatives were evaluated against both amastigote and trypomastigote forms of Trypanosoma cruzi and lead us to identify two compounds that were approximately two times more active than the reference drug, benznidazole, and with good cytotoxic index. Although designed as cruzain inhibitors, the weak potency displayed by the best cinnamyl NAH derivatives indicated that another mechanism of action was likely responsible for their trypanocide action. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
A novel screening platform for potential retroviral fusion inhibitors on the basis of fully functional membrane‐anchored coiled coil lipopeptide receptors has been established. The work comprises the scrutiny of lateral organization of functional lipids in phase separated bilayers and an in‐depth investigation of the biophysical properties of lipopeptide‐based receptors. Lateral sorting of lipids was detected by the recognition of streptavidin of biotinylated lipids in phase separated bilayers and by nanoscopic patterns in mixed fluorocarbon / hydrocarbon lipid bilayers, employing temperature controlled atomic force microscopy (AFM) as a versatile characterization method. Particular features of fluorocarbon bilayers were additionally investigated in great detail by means of ellipsometry and ATR‐IR spectroscopy. Lipopeptide‐receptors were synthesized on the basis of a robust and reliable in situ coupling reaction by coupling terminal cysteine modified receptor‐peptides to a maleimide functionalized lipid bilayer. Receptor functionality of the lipopeptides was visualized by specific binding of vesicles and nanoparticles tracked by a multiplicity of characterization methods, such as AFM, ellipsometry, CLSM and fluorescence spectroscopy. Finally, in situ coupling of viral peptides, originating from the fusion protein of HIV resulted in a mimic of the pre‐hairpin intermediate of gp41. Structural analysis of N36‐lipopepides by means of CD‐spectroscopy in combination with FT‐IR spectroscopy revealed a coiled coil assembly of lipopeptides, which render the aggregates fully functional receptors for potent fusion inhibitors. Thereby, reversible inhibitor binding of T20 and the corresponding C‐ peptides was detected by AFM and ellipsometry, rendering coiled coil lipopeptides a new promising technique for screening of retroviral fusion inhibitors.
Resumo:
The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to inhibit telomerase activity. We used a fluorescence assay to identify molecules that stabilize G-quadruplexes. Intramolecular folding of an oligonucleotide with four repeats of the human telomeric sequence into a G-quadruplex structure led to fluorescence excitation energy transfer between a donor (fluorescein) and an acceptor (tetramethylrhodamine) covalently attached to the 5′ and 3′ ends of the oligonucleotide, respectively. The melting of the G-quadruplex was monitored in the presence of putative G-quadruplex-binding molecules by measuring the fluorescence emission of the donor. A series of compounds (pentacyclic crescent-shaped dibenzophenanthroline derivatives) was shown to increase the melting temperature of the G-quadruplex by 2–20°C at 1 μM dye concentration. This increase in Tm value was well correlated with an increase in the efficiency of telomerase inhibition in vitro. The best telomerase inhibitor showed an IC50 value of 28 nM in a standard telomerase repeat amplification protocol assay. Fluorescence energy transfer can thus be used to reveal the formation of four-stranded DNA structures, and its stabilization by quadruplex-binding agents, in an effort to discover new potent telomerase inhibitors.
Resumo:
Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.