Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay


Autoria(s): Mergny, Jean-Louis; Lacroix, Laurent; Teulade-Fichou, Marie-Paule; Hounsou, Candide; Guittat, Lionel; Hoarau, Magali; Arimondo, Paola B.; Vigneron, Jean-Pierre; Lehn, Jean-Marie; Riou, Jean-François; Garestier, Thérèse; Hélène, Claude
Data(s)

13/03/2001

Resumo

The reactivation of telomerase activity in most cancer cells supports the concept that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to inhibit telomerase activity. We used a fluorescence assay to identify molecules that stabilize G-quadruplexes. Intramolecular folding of an oligonucleotide with four repeats of the human telomeric sequence into a G-quadruplex structure led to fluorescence excitation energy transfer between a donor (fluorescein) and an acceptor (tetramethylrhodamine) covalently attached to the 5′ and 3′ ends of the oligonucleotide, respectively. The melting of the G-quadruplex was monitored in the presence of putative G-quadruplex-binding molecules by measuring the fluorescence emission of the donor. A series of compounds (pentacyclic crescent-shaped dibenzophenanthroline derivatives) was shown to increase the melting temperature of the G-quadruplex by 2–20°C at 1 μM dye concentration. This increase in Tm value was well correlated with an increase in the efficiency of telomerase inhibition in vitro. The best telomerase inhibitor showed an IC50 value of 28 nM in a standard telomerase repeat amplification protocol assay. Fluorescence energy transfer can thus be used to reveal the formation of four-stranded DNA structures, and its stabilization by quadruplex-binding agents, in an effort to discover new potent telomerase inhibitors.

Identificador

/pmc/articles/PMC30607/

/pubmed/11248032

http://dx.doi.org/10.1073/pnas.051620698

Idioma(s)

en

Publicador

The National Academy of Sciences

Direitos

Copyright © 2001, The National Academy of Sciences

Palavras-Chave #Biological Sciences
Tipo

Text