874 resultados para Post-weld Heat-treatment
Resumo:
Post-weld heat-treatment (PWHT) was applied to NiTi weldments to improve the corrosion behaviour by modifying the microstructure and surface composition. The surface oxide film on the weldments is principally TiO2, together with some Ti, TiO, and Ti2O3. The surface Ti/Ni ratio of the weldments after PWHT is increased. The oxide film formed in Hanks’ solution is thicker on the weldments after PWHT. The pitting resistance of the weldments is increased by PWHT. The galvanic effect in the weldments is very small. The weldment with PWHT at 350 °C shows the best corrosion resistance among other heat-treated weldments in this study.
Resumo:
In this study, the environmentally induced cracking behaviour of the NiTi weldment with and without post-weld heat-treatment (PWHT) in Hanks’ solution at 37.5 °C at OCP were studied by tensile and cyclic slow-strain-rate tests (SSRT), and compared with those tested in oil (an inert environment). Our previous results in the tensile and cyclic SSRT showed that the weldment without PWHT showed high susceptibility to the hydrogen cracking, as evidenced by the degradation of tensile and super-elastic properties when testing in Hanks' solution. The weldment after PWHT was much less susceptible to hydrogen attack in Hanks' solution as no obvious degradation in the tensile and super-elastic properties was observed, and only a very small amount of micro-cracks were found in the fracture surface. The susceptibility to hydrogen cracking of the NiTi weldment could be alleviated by applying PWHT at the optimized temperature of 350 °C after laser welding.
Resumo:
In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.
Resumo:
Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.
Resumo:
NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.
Resumo:
This work examined the histological effects, on the rat palatal mucosa, of a denture base acrylic resin, submitted or not to a post-polymerization heat-treatment. Methods: Fifteen adult female Wistar rats, with sixty days old, weighting 150 g – 250 g were divided in G1: animals being maintained under the same conditions as the experimental groups following described, but without the use acrylic palatal plates (control group); G2: use of heat-polymerized acrylic resin palatal plates made of Lucitone 550; G3: use of palatal plates identical to G2, but subjected to a post-polymerization treatment in a water bath at 55°C for 60 min. The plates covered all the palate and were fixed in the molar region with light-cured resin, thus being kept there for 14 days. After the sacrifice, the palate was removed, fixed in formaldehyde 10% and decalcified with EDTA. Sections were stained using haematoxylin and eosin. Images in duplicate were made from the central region of the cuts, to measure the thickness (μm) of the keratin layers (TKC), epithelium total (TET) and connective tissue (TCC). Statistical analyses were carried out by one-way ANOVA and Tukey post-tests (α=0.05). Results: According to the results there was significant difference in the thickness of keratin between G2 and G3, with G1 having the intermediate value and similar to the other groups. There was a significant difference in the connective tissue with G3
Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins
Resumo:
Introduction: Most denture base acrylic resins have polymethylmethacrylate in their composition. Several authors have discussed the polymerization process involved in converting monomer into polymer because adequate polymerization is a crucial factor in optimizing the physical properties and biocompatibility of denture base acrylic resins. To ensure the safety of these materials, in vitro cytotoxicity assays have been developed as preliminary screening tests to evaluate material biocompatibility. 3H-thymidine incorporation test, which measures the number of cells synthesizing DNA, is one of the biological assays suggested for cytotoxicity testing. Aim: The purpose of this study was to investigate, using 3H-thymidine incorporation test, the effect of microwave and water-bath post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. Materials and Methods: Nine disc-shaped specimens (10 x 1 mm) of each denture base resin (Lucitone 550 and QC 20) were prepared according to the manufacturers' recommendations and stored in distilled water at 37°C for 48 h. The specimens were assigned to 3 groups: 1) post-polymerization in a microwave oven for 3 min at 500 W; 2) post-polymerization in water-bath at 55°C for 60 min; and 3) without post-polymerization. For preparation of eluates, 3 discs were placed into a sterile glass vial with 9 mL of Eagle's medium and incubated at 37°C for 24 h. The cytotoxic effect of the eluates was evaluated by 3H-thymidine incorporation. Results: The results showed that the components leached from the resins were cytotoxic to L929 cells, except for the specimens heat treated in water bath (p<0.05). Compared to the group with no heat treatment, water-bath decreased the cytotoxicity of the denture base acrylic resins. Conclusion: The in vitro cytotoxicity of the tested denture base materials was not influenced by microwave post-polymerization heat treatment.
Resumo:
Purpose: To evaluate the effect of post-silanization heat treatment of a silane agent and rinsing with hot water of silanized CAD/CAM feldspathic ceramic surfaces on the microtensile bond strength between resin cement and the ceramic, before and after mechanical cycling.Materials and Methods: Blocks measuring 10 x 5.7 x 3.25 mm(3) were produced from feldspathic ceramic cubes (VITA Mark II, VITA Zanhfabrik). Each ceramic block was duplicated in composite resin using a template made of polyvinylsiloxane impression material. Afterwards, ceramic and corresponding resin composite blocks were ultrasonically cleaned and randomly divided according to the 5 strategies used for conditioning the ceramic surface (n = 10): GHF: etching with hydrofluoric acid 10% + rinsing with water at room temperature + silanization at 20 degrees C; G20: silanization; G77: silanization + oven drying at 77 degrees C; G20r: silanization + hot water rinsing; G77r: silanization + oven drying at 77 C + hot water rinsing. The resin and ceramic blocks were cemented using a dual-curing resin cement. Every group was divided in two subgroups: aging condition (mechanical cycling, designated as a) or non-aging (designated as n). All the bonded assemblies were sectioned into microsticks for microtensile bond strength (mu TBS) testing. The failure mode of the tested specimens was assessed and mu TBS data were statistically analyzed in two ways: first 2-way ANOVA (GHF, G20 and G77 in non-aging/aging conditions) and 3-way ANOVA (temperature x rinsing x aging factors, excluding GHF), followed by Tukey's test (p = 0.05).Results: The 2-way ANOVA revealed that the mu TBS was significantly affected by the surface treatment (p < 0.001) but not by aging (p = 0.68), and Tukey's test showed that G77-n/G77-a (18.0 MPa) > GHF-n/GHF-a (12.2 MPa) > G20-n/G20-a (9.1 MPa). The 3-way ANOVA revealed that the mu TBS was significantly affected by the heat treatment and rinsing factors (p < 0.001), but not affected by aging (p = 0.36). The rinsing procedure decreased, while oven drying increased the bond strengths. Group G77, in both non-aging and aging conditions (18.6-17.4 MPa), had the highest bond values. Failure modes were mainly mixed for all groups.Conclusion: Oven drying at 77 degrees C improved the bond strength between the resin cement and feldspathic ceramic, but hot water rinsing reduced the bond strength and should not be recommended.
Resumo:
In this study, two L27 Taguchi experiments were carried out to study the effect of fibre laser welding parameters and their interactions upon the weld bead aspect ratio of nickel–titanium thin foil. The optimum parameters to produce full penetrated weld with the largest aspect ratio and desirable microstructure were successfully obtained by the Taguchi experimental design. The corrosion property of the optimized NiTi weld in Hank’s solution at 37.5 °C was studied and compared with the as-received NiTi. To improve the corrosion properties of the weld, the effect of post-weld-heat-treatments ranging from 573 to 1173 K was investigated. The corrosion properties, surface morphology, microstructure and Ti/Ni ratio of the heat-treated NiTi weld were analysed. It was found that a post-weld heat treatment at 573 K for 1 h provided the best pitting corrosion resistance at the weld zone.
Resumo:
Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 oC or 623 K) were tested in this work at room temperature, 50 oC (or 323 K) and 75 oC (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 oC (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 oC (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Materiais compósitos são projetados e fabricados para várias aplicações de alto desempenho, incluindo componentes para os segmentos automobilístico, aeroespacial, aeronáutico, naval, de defesa, de óleo e gás, energia eólica e até equipamentos esportivos. Porém, a união por soldagem de Compósitos de Matriz Metálica de Alumínio (Al-CMM) ainda é um grande obstáculo para a maior disseminação desta classe de materiais estruturais. As mudanças microestruturais decorrentes do ciclo de soldagem e/ou do tratamento térmico afetam sensivelmente as propriedades mecânicas e físico-químicas finais da junta e do metal base nas proximidades de mesma, daí a importância de se estudar a evolução microestrutural que prospera nestas etapas. O presente trabalho caracterizou a microestrutura do compósito liga-A356/SiCp soldado por laser de fibra de Itérbio, empregando-se nessa tarefa técnicas de microscopia óptica, radiografia e microscopia eletrônica de varredura, assim como difração de raios-X e de elétrons retroespalhados, ensaio instrumentado de dureza e microtomografia computadorizada. O foco das análises realizadas restringiu-se à geometria dos cordões de solda, à expulsão de SiC particulado da zona soldada, à volatilização de elementos químicos da poça de soldagem, à formação de precipitados fragilizantes de Al4SiC4 em formato de agulhas no cordão de solda e à determinação das regiões com concentração de poros, todos estes fenômenos tendo efeitos nocivos, em maior ou menor extensão, no desempenho global da junta do Al-CMM soldada a laser, notadamente em suas propriedades mecânicas e eletroquímicas.