24 resultados para Pomacentrus amboinensis
Resumo:
Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 µatm by year 2100, with extremes above 2000 µatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 µatm) on resting (M O2rest) and maximum (M O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and Pomacentrus amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28-39% increase in M O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining M O2rest. By contrast, the same treatment had no significant effects on M O2rest or M O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 µatm CO2 resulted in M O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the M O2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2.
Resumo:
1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.
Resumo:
Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective.
Resumo:
Many coral reef fish possess ultraviolet (UV) colour patterns. The behavioural significance of these patterns is poorly understood and experiments on this issue have not been reported for free-living reef fish in their natural environment. The damselfish Pomacentrus amboinensis has UV facial patterns, and spectroradiometric ocular media measurements show that it has the potential for UV vision. To test the potential behavioural significance of the UV patterns, I studied the response of males, in natural territories on the reef and in aquaria, to two conspecific intruders, one presented in a UV-transmitting (UV+) container and the other in a UV-absorbing (UV-) one. Territory owners attacked intruders viewed through UV+ filters significantly more often and for longer than intruders viewed through the UV- filter. In general, the results of the field experiment confirmed those of the laboratory experiment. The results support the hypothesis that P. amboinensis males are sensitive to UV light and that reflectance patterns, which appear in high contrast only in UV, modulate the level of aggressive behaviour. A recent survey showed that many predatory fish may not have UV vision and the use of UV colours in select species of reef fish may therefore serve as a 'private communication channel'. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ultraviolet (UV) absorbance of the mucus of a Great Barrier Reef damselfish Pomacentrus amboinensis was investigated with regard to ontogeny and time spent in captivity. The UV absorbance of P. amboinensis mucus increased with fish size and decreased with time spent in captivity. The wavelength of maximum absorbance of the mucus did not change with fish size, but shifted towards shorter wavelengths with increasing time spent in captivity. The UV absorbance of the mucus of fish with 'fin rot' was compared to that of similar healthy individuals, and a significant decrease in UV absorbance of unhealthy fish mucus was detected; no wavelength shifting occurred. Pomacentrus amboinensis appears to sequester mycosporine-like amino acids from the diet in order to protect epithelial tissues from UV damage, and decreases in UV absorbance in captive fish were probably due to insufficient dietary availability.
Resumo:
Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.
Resumo:
We examine the structure and phylogeography of the pig-eye shark (Carcharhinus amboinensis) common in shallow coastal environments in northern Australia using two types of genetic markers, two mitochondrial (control region and NADH hydrogenase 4) and two nuclear (microsatellite and Rag 1) DNA. Two populations were defined within northern Australia on the basis of mitochondrial DNA evidence, but this result was not supported by nuclear microsatellite or Rag 1 markers. One possibility for this structure might be sex-specific behaviours such as female philopatry, although we argue it is doubtful that sufficient time has elapsed for any potential signatures from this behaviour to be expressed in nuclear markers. It is more likely that the observed pattern represents ancient populations repeatedly isolated and connected during episodic sea level changes during the Pleistocene epoch, until current day with restricted contemporary gene flow maintaining population genetic structure. Our results show the need for an understanding of both the history and ecology of a species in order to interpret patterns in genetic structure.
Resumo:
We examined the potential for water chemistry to affect the width of daily increments in reef fish otoliths using both mensurative and manipulative methods. We found significant differences in the widths of increments in otoliths of the neon damselfish (Pomacentrus coelestis) collected in different habitats at One Tree Island on the Great Barrier Reef. We then used manipulative experiments to determine if natural water masses (ocean water vs. lagoon plume) could produce different incremental widths in otoliths in the absence of potentially confounding factors. Fish exposed to ocean water had significantly wider otolith increments for two of the three experiments. Elemental analyses indicated that Ba/Ca ratios were significantly correlated with increment widths for two of the three experiments and Sr/Ca ratios did not correlate with increment width for any experimental period. Variation in crystal-lattice orientation did not explain differences in increment width between treatments. Differences in water chemistry can affect increment widths in otoliths of reef fishes, potentially confounding patterns previously attributed to growth rate or condition alone.
Resumo:
The sexual system of the symbiotic shrimp Thor amboinensis is described, along with observations on sex ratio and host-use pattern of different populations. We used a comprehensive approach to elucidate the previously unknown sexual system of this shrimp. Dissections, scanning electron microscopy, size-frequency distribution analysis, and laboratory observations demonstrated that T amboinensis is a protandric hermaphrodite: shrimp first mature as males and change into females later in life. Thor amboinensis inhabited the large and structurally heterogeneous sea anemone Stichoclactyla helianthus in large groups (up to 11 individuals) more frequently than expected by chance alone. Groups exhibited no particularly complex social structure and showed male-biased sex ratios more frequently than expected by chance alone. The adult sex ratio was male-biased in the four separate populations studied, one of them being thousands of kilometers apart from the others. This study supports predictions central to theories of resource monopolization and sex allocation. Dissections demonstrated that unusually large males were parasitized by an undescribed species of isopod (family Entoniscidae). Infestation rates were similarly low in both sexes (approximate to 11%-12%). The available information suggests that T. amboinensis uses pure search promiscuity as a mating system. This hypothesis needs to be formally tested with mating behavior observations and field measurements on the movement pattern of both sexes of the species. Further detailed studies on the lifestyle and sexual system of all the species within this genus and the development of a molecular phylogeny are necessary to elucidate the evolutionary history of gender expression in the genus Thor.
Resumo:
Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios.
Resumo:
Una dieta que aporte la adecuada nutrición, tanto a las larvas como a los reproductores, favorece la disminución de la duración del desarrollo larvario y la supervivencia a situaciones de mayor estrés fisiológico, como pueden ser determinadas mudas. Por ello, en este trabajo se ha valorado la supervivencia de larvas de Lysmata amboinensis al alimentarlas con dos tipos de variedades de Artemia salina: una de 430 μ y un contenido en ácidos grasos de 19 mg/g, y otra de 480 μ y un contenido en ácidos grasos de 25 mg/g. En los resultados existe una tendencia según la cual el porcentaje de larvas, es mayor con la dieta de Artemia salina 480μ, resultado de la mejora en la captura del alimento por parte de las larvas, y del mayor aporte nutritivo de este tipo de Artemia.
Resumo:
This study investigated the spatial distribution patterns of three shrimp species, Periclimenes holthuisi, P. brevicarpalis, and Thor amboinensis on the sea anemone Stichodactyla haddoni in the laboratory. Anemones were partitioned into five zones (mouth, inner tentacle, outer tentacle, upper column, and lower column), and shrimp distribution on these zones was determined. Regardless of species, significantly higher numbers of shrimps chose outer tentacles (>40%) over other zones during daytime. Such distribution might be attributed to their feeding practices as these crustaceans clipped and ate parts of the outer tentacles. Periclimenes holthuisi also showed varying temporal distribution patterns on their hosts. At night when anemones contracted their tentacles, shrimp moved in significant numbers from the outer tentacle region either to the column or off the anemones. Shrimps returned to the tentacles during daytime when anemones expanded their tentacles. Thus, spatial and temporal distribution of shrimps depend upon their feeding activities and degree of anemone expansion.
Resumo:
We report dietary items of pigeons and doves from northern New South Wales and southern Queensland, obtained from opportunistic sampling of the gut contents of dead birds and observing foraging birds. Most records were from fragmented rainforest habitats, which now support abundant invasive fleshy-fruited plants. The fruits and seeds of invasive plants, particularly Camphor Laurel Cinnamomum camphora, formed the dominant food of several of the species sampled, although in some cases these birds appear to destroy most of the ingested seeds in the gizzard, thereby not contributing to weed dispersal. We also describe the first records of White-headed Pigeons Columba leucomela eating flowers and Brown Cuckoo-Doves Macropygia amboinensis eating flower buds. Camphor Laurel, via flowers, green and ripe fruits, and seeds, provided food for White-headed Pigeons in the Goolmangar district of New South Wales throughout the entire year. Seventy percent of the plant species whose fruits and seeds were recovered from the gut had not previously been recorded as food items for those bird species, illustrating how little is known about the diets of pigeons and doves in fragmented Australian landscapes.
Resumo:
Novel species of Cercospora and Pseudocercospora are described from Australian native plant species. These taxa are Cercospora ischaemi sp. nov. on Ischaemum australe (Poaceae); Pseudocercospora airliensis sp. nov. on Polyalthia nitidissima (Annonaceae); Pseudocercospora proiphydis sp. nov. on Proiphys amboinensis (Amaryllidaceae); and Pseudocercospora jagerae sp. nov. on Jagera pseudorhus var. pseudorhus (Sapindaceae). These species were characterised by morphology and an analysis of partial nucleotide sequence data for the three gene loci, ITS, LSU and EF-1α. Recent divergence of closely related Australian species of Pseudocercospora on native plants is proposed.
Resumo:
Dissertação de Mestrado, Biologia Marinha, especialização em Pescas e Aquacultura, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2009