808 resultados para Polynomial Algorithm
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
Abstract not available
Resumo:
The Whitehead minimization problem consists in finding a minimum size element in the automorphic orbit of a word, a cyclic word or a finitely generated subgroup in a finite rank free group. We give the first fully polynomial algorithm to solve this problem, that is, an algorithm that is polynomial both in the length of the input word and in the rank of the free group. Earlier algorithms had an exponential dependency in the rank of the free group. It follows that the primitivity problem – to decide whether a word is an element of some basis of the free group – and the free factor problem can also be solved in polynomial time.
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
We consider problems of splitting and connectivity augmentation in hypergraphs. In a hypergraph G = (V +s, E), to split two edges su, sv, is to replace them with a single edge uv. We are interested in doing this in such a way as to preserve a defined level of connectivity in V . The splitting technique is often used as a way of adding new edges into a graph or hypergraph, so as to augment the connectivity to some prescribed level. We begin by providing a short history of work done in this area. Then several preliminary results are given in a general form so that they may be used to tackle several problems. We then analyse the hypergraphs G = (V + s, E) for which there is no split preserving the local-edge-connectivity present in V. We provide two structural theorems, one of which implies a slight extension to Mader’s classical splitting theorem. We also provide a characterisation of the hypergraphs for which there is no such “good” split and a splitting result concerned with a specialisation of the local-connectivity function. We then use our splitting results to provide an upper bound on the smallest number of size-two edges we must add to any given hypergraph to ensure that in the resulting hypergraph we have λ(x, y) ≥ r(x, y) for all x, y in V, where r is an integer valued, symmetric requirement function on V*V. This is the so called “local-edge-connectivity augmentation problem” for hypergraphs. We also provide an extension to a Theorem of Szigeti, about augmenting to satisfy a requirement r, but using hyperedges. Next, in a result born of collaborative work with Zoltán Király from Budapest, we show that the local-connectivity augmentation problem is NP-complete for hypergraphs. Lastly we concern ourselves with an augmentation problem that includes a locational constraint. The premise is that we are given a hypergraph H = (V,E) with a bipartition P = {P1, P2} of V and asked to augment it with size-two edges, so that the result is k-edge-connected, and has no new edge contained in some P(i). We consider the splitting technique and describe the obstacles that prevent us forming “good” splits. From this we deduce results about which hypergraphs have a complete Pk-split. This leads to a minimax result on the optimal number of edges required and a polynomial algorithm to provide an optimal augmentation.
Resumo:
We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation ratio known so far for these problems has ratio 3/2 + epsilon, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver [On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM J. Discrete Math. 2(1) (1989) 68-72]. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Globally optimal triangulations are difficult to be found by deterministic methods as, for most type of criteria, no polynomial algorithm is known. In this work, we consider the Minimum Weight Triangulation (MWT) problem of a given set of n points in the plane. This paper shows how the Ant Colony Optimization (ACO) metaheuristic can be used to find high quality triangulations. For the experimental study we have created a set of instances for MWT problem since no reference to benchmarks for these problems were found in the literature. Through the experimental evaluation, we assess the applicability of the ACO metaheuristic for MWT problem.
Resumo:
In this work, we consider the Minimum Weight Pseudo-Triangulation (MWPT) problem of a given set of n points in the plane. Globally optimal pseudo-triangulations with respect to the weight, as optimization criteria, are difficult to be found by deterministic methods, since no polynomial algorithm is known. We show how the Ant Colony Optimization (ACO) metaheuristic can be used to find high quality pseudo-triangulations of minimum weight. We present the experimental and statistical study based on our own set of instances since no reference to benchmarks for these problems were found in the literature. Throughout the experimental evaluation, we appraise the ACO metaheuristic performance for MWPT problem.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis .
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.