1000 resultados para Polycrystalline alloys


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adsorption of CO has been investigated on the surfaces of polycrystalline transition metals as well as alloys by employing electron energy loss spectroscopy (eels) and ultraviolet photoelectron spectroscopy (ups). CO adsorbs on polycrystalline transition metal surfaces with a multiplicity of sites, each being associated with a characteristic CO stretching frequency; the relative intensities vary with temperature as well as coverage. Whilst at low temperatures (80- 120 K), low coordination sites are stabilized, the higher coordination sites are stabilized at higher temperatures (270-300 K). Adsorption on surfaces of polycrystalline alloys gives characteristic stretching frequencies due to the constituent metal sites. Alloying, however, causes a shift in the stretching frequencies, indicating the effect of the band structure on the nature of adsorption. The up spectra provide confirmatory evidence for the existence of separate metal sites in the alloys as well as for the high-temperature and low-temperature phases of adsorbed CO.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have measured the internal friction and speed of sound in several polycrystalline alloys, using compound torsional oscillators at frequencies between 60 kHz and 100 kHz and temperatures between 50 mK and 100 K. By combining these data with existing elastic and thermal data on similar alloys, we find that those alloys which can undergo diffusionsless phase transitions, such as Ti:Nb, Ti:V, or Zr:Nb in certain ranges of composition have glasslike excitations, since they have elastic properties which agree in magnitude and temperature dependence with those of amorphous solids. By contrast, crystalline continuous solution alloys, such as Nb:Ta, or alloys with diffusive phase transitions, such as high-pressure quenched Al94Si6, have the same elastic properties as are known for crystals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last 30 years several studies have been made to understand the relaxation mechanisms of the hydrogen atoms present in transition metals and their alloys. In this work, we observed the stress-induced ordering of hydrogen atoms around the interstitial oxygen atoms near the niobium matrix atoms. We studied this relaxation process by measuring the attenuation of longitudinal ultrasonic waves. These measurements were made in Nb1.0%Zr polycrystalline alloys at 10 and 30 MHz, pure and doped with 0.7 and 4.2 at.% hydrogen. The results revealed a thermally activated relaxation structure around 202 K and 235 K for 10 MHz and 30 MHz respectively. This relaxation structure increases with increasing hydrogen concentration. © 1994.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel CVD WSi2 technology with low series and contact resistance in SiGe HBTs was achieved. Specific contact resistance to Si1-xGex with 0

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor- based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro- and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetisation vs. temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment FCC layer at the seed interface topped with a higher moment HCP layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetisation was found to drop with increasing unit cell size. In-situ annealed rare earth films exceeded the saturation magnetisation of a high-moment Fe65Co35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetisation and operating temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ac susceptibility and electrical resistivity studies on polycrystalline Fe80-xNixCr20 (21 \leq x \leq 30) alloys, with x=21, 23, 26, and 30, between 4.2 and 80 K, are reported. A previous dc magnetization study indicated the presence of ferro-spin-glass mixed-phase behavior in x=23 and 26 alloys while the alloys with x=21 and 30 were found to be spin-glass and ferromagnetic, respectively. The present ac susceptibility results support the above picture. In the electrical resistivity study, a low-temperature minimum in the resistivity-temperature curve is observed in all the alloys except the ferromagnetic one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead telluride and its alloys are well known for their thermoelectric applications. Here, a systematic study of PbTe1-ySey alloys doped with indium has been done. The powder X-Ray diffraction combined with Rietveld analysis confirmed the polycrystalline single phase nature of the samples, while microstructural analysis with scanning electron microscope results showed densification of samples and presence of micrometer sized particles. The temperature dependent transport properties showed that in these alloys, indium neither pinned the Fermi level as it does in PbTe, nor acted as a resonant dopant as in SnTe. At high temperatures, bipolar effect was observed which restricted the zT to 0.66 at 800 K for the sample with 30% Se content. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in prediction the transformation behavior of a SMA (Cu-Al-Zn-Mn) under complex thermomechanical load (including complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their high specific strength and low density, magnesium and magnesium-based alloys have gained great technological importance in recent years. However, their underlying hexagonal crystal structure furnishes Mg and its alloys with a complex mechanical behavior because of their comparably smaller number of energetically favorable slip systems. Besides the commonly studied slip mechanism, another way to accomplish general deformation is through the additional mechanism of deformation-induced twinning. The main aim of this thesis research is to develop an efficient continuum model to understand and ultimately predict the material response resulting from the interaction between these two mechanisms.

The constitutive model we present is based on variational constitutive updates of plastic slips and twin volume fractions and accounts for the related lattice reorientation mechanisms. The model is applied to single- and polycrystalline pure magnesium. We outline the finite-deformation plasticity model combining basal, pyramidal, and prismatic dislocation activity as well as a convexification based approach for deformation twinning. A comparison with experimental data from single-crystal tension-compression experiments validates the model and serves for parameter identification. The extension to polycrystals via both Taylor-type modeling and finite element simulations shows a characteristic stress-strain response that agrees well with experimental observations for polycrystalline magnesium. The presented continuum model does not aim to represent the full details of individual twin-dislocation interactions, yet it is sufficiently efficient to allow for finite element simulations while qualitatively capturing the underlying microstructural deformation mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is proposed to quantify progress of dynamic recrystallization in polycrystalline metals during deformation. This approach utilises the stress–strain curve of the material to quantify the progress of dynamic softening. The outcome of this method showed a good agreement with experimental results for alloys of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three ferromagnetic shape-memory alloys with the chemical compositions of Ni53Mn25Ga22, Ni48Mn30Ga22, and Ni48Mn25Ga22Co5 were prepared by the induction-melting and hot-forging process. The crystal structures were investigated by the neutron powder diffraction technique, showing that Ni53Mn25Ga22 and Ni48Mn25Ga22Co5 have a tetragonal, 14/mmm martensitic structure at room temperature, while Ni48Mn30Ga22 has a cubic, L21 austenitic structure at room temperature. The development of textures in the hot-forged samples shows the in-plane plastic flow anisotropy from the measured pole figures by means of the neutron diffraction technique. Significant texture changes were observed for the Ni48Mn25Ga22Co5 alloy after room temperature deformation, which is due to the deformation-induced rearrangements of martensitic variants. An excellent shape-memory effect (SME) with a recovery ratio of 74 pct was reported in this Ni48Mn25Ga22Co5 polycrystalline alloy after annealing above the martensitic transformation temperature, and the “shape-memory” influence also occurs in the distributions of grain orientations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.