980 resultados para Polo Recycling Gramacho
Resumo:
This work presents a proposal to create a Polo Ceramic Craft in the town of Indiana - SP, through the potter’s organization in a cooperative that will coordinate activities to add value to ceramic pieces. To achieve this, two things are essential: improving the ceramic body and improve the properties of the ceramic material. For the first action it’s necessary to create a Central Mass Production of Ceramics, to provide raw materials and homogeneous composition that results in differentiated ceramic after burning process (sintering). To this end, we propose the incorporation of additives (which act as fluxes) to the clay material. These additives can be mineral such as feldspar and nefelinas or leavings, such as glass powder obtained from disposable containers. For the second action is necessary to acquire an oven, electric or gas, it reaches higher temperatures (around 1200 ° C). The presence of the additive and burning at higher temperatures will enable better production of sintered ceramic material with less porosity and water absorption and higher mechanical strength, and pieces vitrified and glazed, allowing them to assign a higher value. For the production of these materials (thinner walls) requires a smaller volume of clayey raw materials. Besides benefiting the ceramic pieces, the proposed changes reduce the environmental impact caused by burning wood, since it will be replaced by natural gas (or electricity), and even will reduce the disposal of glass containers in the environment by recycling and incorporating this material in the clay. From a social standpoint, the cooperative is crucial to the viability of the proposed project, to coordinate activities and commercial production, which will result in better wages and profits for companies and consequently for the city and its population
Resumo:
Yeast flocculation (Saccharomyces cerevisiae) is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1-10% w·v(-1)), polyethyleneimine (0.5% v·v(-1)), and tripolyphosphate (1-10% w·v(-1)) inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L(-1). Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.
Resumo:
This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI center dot NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI center dot PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 degrees C, 200 degrees C and 250 degrees C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 degrees C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.
Resumo:
Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.
Resumo:
Investiga os sentidos do ser e dos saberes docentes com ênfase no processo de formação inicial de professores para a educação básica, por meio da modalidade de Educação a Distância – EAD. Questiona os modos como o ser docente e os saberes da profissão docente foram se constituindo ao longo das trajetórias de formação percorridas pelos estudantes egressos dos três primeiros cursos de licenciatura em Química, Física e Artes Visuais, ofertados pela Universidade Federal do Espírito Santo (Ufes), no âmbito do Sistema Universidade Aberta do Brasil – UAB, entre 2008 e 2014, no Polo da cidade de Itapemirim/ES, em um recorte temporal definido como antes, durante e após a integralização dos referidos cursos. Pressupõe uma perspectiva teórica crítica, que compreende a formação e a docência como processos históricos de construção social e coletiva, que não possuem início e término em si, por si e para si. A pesquisa delineia-se como um estudo de caso qualitativo. A abordagem aos sujeitos deu-se por meio de técnicas que visam à coleta de dados descritivos, com o uso de três principais instrumentos, no formato semiestruturado: um questionário, uma entrevista coletiva e um fórum virtual temático. Para compor o repertório de dados, ocorreram, ainda, informações advindas dos documentos e bases legais que deram sustentação à oferta dos cursos, bem como dos relatórios de acompanhamento e gestão destes. A análise dos dados se deu por meio da técnica de triangulação, com sustentação teórica nos estudos de Freire, Nóvoa e Tardif. Evidencia a necessidade de estudos na área da formação articulada à EAD, bem como da consideração dos saberes cotidianos da docência na proposição de políticas à sua formação. Revela uma variedade de sentidos atribuídos aos conceitos de docência e dos saberes da docência e a sua constituição em meio a processos formativos ao longo de toda a vida dos sujeitos. Reconhece a necessidade de uma formação contínua do docente após a obtenção de sua titulação profissional e aponta a EAD como possibilidade de acesso a essa formação na/pela Universidade pública, em tempos e espaços que se vêm constituindo, em meio às novas tecnologias da informação e da comunicação. Ressalta a importância do Sistema UAB para a disseminação da formação e da EAD, bem como a necessidade de institucionalização dessa modalidade como forma de superação do caráter emergencial e provisório da atual política de formação de professores no Brasil.
Resumo:
Construction and demolition waste (CDW) represents around 31% of all waste produced in the European Union. It is today acknowledged that the consumption of raw materials in the construction industry is a non-sustainable activity. It is thus necessary to reduce this consumption, and the volume of CDW dumped, by using this waste as a source of raw materials for the production of recycled aggregates. One potential use of these aggregates is their incorporation in reinforced concrete as a replacement of natural aggregates. A concrete that incorporates these aggregates and still performs well requires them to be fully characterized so that their behaviour within the concrete can be predicted. Coarse recycled aggregates have been studied quite thoroughly, because they are simpler to reintroduce in the market as a by-product, and so has the performance of concrete made with them. This paper describes the main results of research designed to characterize the physical and chemical properties of fine recycled aggregates for concrete production and their relationship with mineralogical composition and preprocessing. The constraints of the incorporation of fine aggregates in reinforced concrete are discussed. It is shown that, unless a developed processing diagram is used, this application is not feasible. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Introdução: A aplicação das técnicas de Mulligan têm como objetivo reduzir a dor, aumentar as amplitudes articulares e melhorar a funcionalidade, assim como sobre a aplicação de um programa exercícios supervisionados ao complexo articular do ombro. O propósito de um programa de exercícios do ombro pode ser dirigido para o alívio da dor, para o equilíbrio e aumento da força muscular, assim como para restabelecer sem dor as amplitudes articulares de movimento. Objetivos: Este estudo teve como objectivo comparar a eficácia do conceito de Mulligan com um programa de exercícios terapêuticos na diminuição da dor no ombro em atletas de Polo Aquático. Métodos: Realizou-se um estudo quase-experimental, sendo a amostra composta por 13 atletas do sexo masculino e 11 atletas do sexo feminino, que apresentavam dor na região do ombro, com idades compreendidas entres os 19 e os 32 anos de idade (n=24). Foi aplicado um questionário para a recolha da informação relativa à caracterização do atleta e á presença de dor. A avaliação foi realizada em diversos momentos, nomeadamente avaliação pré tratamento, avaliação pós primeira, segunda e terceira semana de tratamento, utilizando o instrumento EVA. Estatística: Procedeu-se à análise estatística descritiva e recorreu-se ao teste de Willcoxon, Teste T para testar associação entre a intensidade da dor e os diferentes momentos da avaliação da dor, a Teste de Willcoxon para testar associação entre a intensidade da dor entre os diferentes momentos de avaliação. Foi usado um nível de significância de 0,05. Resultados: Os resultados demonstram que nos dois grupos os atletas tiveram diminuição da intensidade da dor no ombro, embora se tenha verificado que a intervenção com MVM produz resultados mais rápidos e eficazes na diminuição da intensidade da dor, comparativamente á intervenção com exercícios terapêuticos supervisionados em atletas de Polo Aquático com dor no ombro. Conclusão: A intervenção com mobilização com movimento teve maior eficácia na diminuição intensidade da dor comparativamente á intervenção com exercícios terapêuticos supervisionados em atletas com dor no ombro.
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.
Resumo:
The contribution of the evapotranspiration from a certain region to the precipitation over the same area is referred to as water recycling. In this paper, we explore the spatiotemporal links between the recycling mechanism and the Iberian rainfall regime. We use a 9 km resolution Weather Research and Forecasting simulation of 18 years (1990-2007) to compute local and regional recycling ratios over Iberia, at the monthly scale, through both an analytical and a numerical recycling model. In contrast to coastal areas, the interior of Iberia experiences a relative maximum of precipitation in spring, suggesting a prominent role of land-atmosphere interactions on the inland precipitation regime during this period of the year. Local recycling ratios are the highest in spring and early summer, coinciding with those areas where this spring peak of rainfall represents the absolute maximum in the annual cycle. This confirms that recycling processes are crucial to explain the Iberian spring precipitation, particularly over the eastern and northeastern sectors. Average monthly recycling values range from 0.04 in December to 0.14 in June according to the numerical model and from 0.03 in December to 0.07 in May according to the analytical procedure. Our analysis shows that the highest values of recycling are limited by the coexistence of two necessary mechanisms: (1) the availability of sufficient soil moisture and (2) the occurrence of appropriate synoptic configurations favoring the development of convective regimes. The analyzed surplus of rainfall in spring has a critical impact on agriculture over large semiarid regions of the interior of Iberia.
Resumo:
In this study, a new waste management solution for thermoset glass fibre reinforced polymer (GFRP) based products was assessed. Mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the prospective added-value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. Different GFRP waste admixed mortar formulations were analyzed varying the content, between 4% up to 12% in weight, of GFRP powder and fibre mix waste. The effect of incorporation of a silane coupling agent was also assessed. Design of experiments and data treatment was accomplished through implementation of full factorial design and analysis of variance ANOVA. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacity of GFRP waste admixed mortars with regard to unmodified polymer mortars. The key findings of this study showed a viable technological option for improving the quality of polyester based mortars and highlight a potential cost-effective waste management solution for thermoset composite materials in the production of sustainable concrete-polymer based products.
Resumo:
In this study, the added value resultant from the incorporation of pultrusion production waste into polymer based concretes was assessed. For this purpose, different types of thermoset composite scrap material, proceeding from GFRP pultrusion manufacturing process, were mechanical shredded and milled into a fibrous-powdered material. Resultant GFRP recyclates, with two different size gradings, were added to polyester based mortars as fine aggregate and filler replacements, at various load contents between 4% up to 12% in weight of total mass. Flexural and compressive loading capacities were evaluated and found better than those of unmodified polymer mortars. Obtained results highlight the high potential of recycled GFRP pultrusion waste materials as efficient and sustainable admixtures for concrete and mortar-polymer composites, constituting an emergent waste management solution.