959 resultados para Polar navigation
Resumo:
Les changements climatiques amènent des transformations profondes de l’environnement arctique. La diminution de l’étendue de la couverture de glace permet un accès facilité aux ressources naturelles et aux communautés nordiques. Au Canada, la région arctique est caractérisée par une géographie archipélagique et un réseau de transport rudimentaire. Le transport maritime est le mode privilégié pour l’acheminement du fret aux communautés et aux sites industriels de l’Arctique. La littérature scientifique présente des lacunes importantes au sujet de la navigation commerciale dans l’Arctique canadien. Peu d’études portent sur le trafic de ravitaillement en raison de son volume peu élevé et de la faible diversité des types de produits transportés, bien qu’il s’agisse d’une activité grandement significative pour les populations et l’économie du Nord. Cette recherche vise à combler cette lacune en dressant un portrait du transport maritime et de la performance des opérations portuaires dans l’Arctique canadien. L’étude est structurée en quatre parties. Une analyse du trafic et des échanges maritimes est d’abord réalisée sous trois échelles : internationale, nationale et intra-arctique. Ensuite, l’étude de la flotte et des routes fait ressortir la distribution géographique des transporteurs. Puis, la performance des ports est mesurée grâce à des indicateurs et un système de cotation. Finalement, une évaluation des opérations maritimes arctiques est menée par l’entremise d’informations récoltées lors d’entrevues avec les membres de l’industrie maritime, de conférences et de travail de terrain. Les sujets abordés concernent l’évolution de la desserte, les défis posés par la navigation en milieu arctique et le développement des ports du Nord canadien. Les résultats de l’étude mènent à la conclusion que le transport maritime dans l’Arctique est caractérisé par une croissance positive du volume acheminé et une implication profonde des transporteurs dédiés à la desserte nordique, mais des infrastructures portuaires et maritimes sous-développées.
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
Resumo:
Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a “tongue” of ionization (TOI).
Resumo:
A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.
Resumo:
The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.