985 resultados para Polar coordinates
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.
Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes
Resumo:
Jacobian singularities of differential operators in curvilinear coordinates occur when the Jacobian determinant of the curvilinear-to-Cartesian mapping vanishes, thus leading to unbounded coefficients in partial differential equations. Within a finite-difference scheme, we treat the singularity at the pole of polar coordinates by setting up complementary equations. Such equations are obtained by either integral or smoothness conditions. They are assessed by application to analytically solvable steady-state heat-conduction problems.
Resumo:
Monte Carlo techniques, which require the generation of samples from some target density, are often the only alternative for performing Bayesian inference. Two classic sampling techniques to draw independent samples are the ratio of uniforms (RoU) and rejection sampling (RS). An efficient sampling algorithm is proposed combining the RoU and polar RS (i.e. RS inside a sector of a circle using polar coordinates). Its efficiency is shown in drawing samples from truncated Cauchy and Gaussian random variables, which have many important applications in signal processing and communications. RESUMEN. Método eficiente para generar algunas variables aleatorias de uso común en procesado de señal y comunicaciones (por ejemplo, Gaussianas o Cauchy truncadas) mediante la combinación de dos técnicas: "ratio of uniforms" y "rejection sampling".
Resumo:
In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624551]
Resumo:
In dam inspection tasks, an underwater robot has to grab images while surveying the wall meanwhile maintaining a certain distance and relative orientation. This paper proposes the use of an MSIS (mechanically scanned imaging sonar) for relative positioning of a robot with respect to the wall. An imaging sonar gathers polar image scans from which depth images (range & bearing) are generated. Depth scans are first processed to extract a line corresponding to the wall (with the Hough transform), which is then tracked by means of an EKF (Extended Kalman Filter) using a static motion model and an implicit measurement equation associating the sensed points to the candidate line. The line estimate is referenced to the robot fixed frame and represented in polar coordinates (rho&thetas) which directly corresponds to the actual distance and relative orientation of the robot with respect to the wall. The proposed system has been tested in simulation as well as in water tank conditions
Resumo:
We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in cylindrical coordinates. An important application of this method is the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh consisting of three concentric domains representing the borehole fluid in the center, the borehole casing and the surrounding porous formation. The spatial discretization is based on a Chebyshev expansion in the radial direction, Fourier expansions in the other directions, and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method based on the method of characteristics is used to match the boundary conditions at the fluid/porous-solid and porous-solid/porous-solid interfaces. The viability and accuracy of the proposed method has been tested and verified in 2D polar coordinates through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently benchmarked solution for 2D Cartesian coordinates. The proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is handled adequately.
Resumo:
In this work we study the integrability of a two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fourth degree. We give sufficient conditions for integrability in polar coordinates. Finally we establish a conjecture about the independence of the two classes of parameters which appear in the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
In this work we study the integrability of two-dimensional autonomous system in the plane with linear part of center type and non-linear part given by homogeneous polynomials of fifth degree. We give a simple characterisation for the integrable cases in polar coordinates. Finally we formulate a conjecture about the independence of the two classes of parameters which appear on the system; if this conjecture is true the integrable cases found will be the only possible ones.
Resumo:
Independence among channels processing different aspects of spatial information, including orthogonal stimuli, has been generally assumed in the literature. We tested independence between the processing of jo targets and the processing of either vertical sinusoidal gratings or angular frequency stimuli with suprathreshold summation. We found the detection of a jo target at 1 cpd to be affected in an inhibitory fashion by either background angular frequencies in the range of 3-96 cycles or sinewave gratings in the range of 0.8-3.0 cpd. These results demonstrate interactions both among orthogonal stimuli and among channels processing vertical sinewave gratings and jo target stimuli. Our discussion focuses on the hypothesis of frequency decomposition in polar coordinates
Resumo:
We measured human contrast sensitivity to radial frequencies modulated by cylindrical (Jo) and spherical (j o) Bessel profiles. We also measured responses to profiles of j o, j1, j2, j4, j8, and j16. Functions were measured three times by at least three of eight observers using a forced-choice method. The results conform to our expectations that sensitivity would be higher for cylindrical profiles. We also observed that contrast sensitivity is increased with the j n order for n greater than zero, having distinct orderly effects at the low and high frequency ends. For n = 0, 1, 2, and 4 sensitivity tended to occur around 0.8-1.0 cpd while for n = 8 and 16 it seemed to shift gradually to 0.8-3.0 cpd. We interpret these results as being consistent with the possibility that spatial frequency processing by the human visual system can be defined a priori in terms of polar coordinates and discuss its application to study face perception.
Resumo:
When contrast sensitivity functions to Cartesian and angular gratings were compared in previous studies the peak sensitivity to angular stimuli was reported to be 0.21 log units higher. In experiments carried out to repeat this result, we used the same two-alternative forced-choice paradigm, but improved experimental control and precision by increasing contrast resolution from 8 to 12 bits, increasing the screen refresh rate from 30 Hz interlaced to 85 Hz non-interlaced, linearizing the voltage-luminance relation, modulating luminance in frequencies that minimize pixel aliasing, and improving control of the subject's exposure to the stimuli. The contrast sensitivity functions to Cartesian and angular gratings were similar in form and peak sensitivity (2.4 cycles per visual degree (c/deg) and 32 c/360º, respectively) to those reported in a previous study (3 c/deg and 32 c/360º, respectively), but peak sensitivity to angular stimuli was 0.13 log units lower than that to Cartesian stimuli. When the experiment was repeated, this time simulating the experimental control level used in the previous study, no difference between the peak sensitivity to Cartesian and angular stimuli was found. This result agrees with most current models that assume Cartesian filtering at the first visual processing stage. The discrepancy in the results is explained in part by differences in the degree of experimental control.
Resumo:
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture.
Resumo:
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique dans un espace euclidien de dimension deux avec une intégrale du mouvement d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques. Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques. Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées paraboliques d’une autre côté. Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique, Hamiltonien, séparation de variable, commutation.
Resumo:
Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.