995 resultados para Poisson, Distribuci
Resumo:
It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
This paper examines a dataset which is modeled well by thePoisson-Log Normal process and by this process mixed with LogNormal data, which are both turned into compositions. Thisgenerates compositional data that has zeros without any need forconditional models or assuming that there is missing or censoreddata that needs adjustment. It also enables us to model dependenceon covariates and within the composition
Resumo:
We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines
Resumo:
This paper examines a dataset which is modeled well by the Poisson-Log Normal process and by this process mixed with Log Normal data, which are both turned into compositions. This generates compositional data that has zeros without any need for conditional models or assuming that there is missing or censored data that needs adjustment. It also enables us to model dependence on covariates and within the composition
Resumo:
We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines
Resumo:
In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs. Muscle Nerve 42: 825-828, 2010
Resumo:
O presente trabalho objetiva avaliar o desempenho do MECID (Método dos Elementos de Contorno com Interpolação Direta) para resolver o termo integral referente à inércia na Equação de Helmholtz e, deste modo, permitir a modelagem do Problema de Autovalor assim como calcular as frequências naturais, comparando-o com os resultados obtidos pelo MEF (Método dos Elementos Finitos), gerado pela Formulação Clássica de Galerkin. Em primeira instância, serão abordados alguns problemas governados pela equação de Poisson, possibilitando iniciar a comparação de desempenho entre os métodos numéricos aqui abordados. Os problemas resolvidos se aplicam em diferentes e importantes áreas da engenharia, como na transmissão de calor, no eletromagnetismo e em problemas elásticos particulares. Em termos numéricos, sabe-se das dificuldades existentes na aproximação precisa de distribuições mais complexas de cargas, fontes ou sorvedouros no interior do domínio para qualquer técnica de contorno. No entanto, este trabalho mostra que, apesar de tais dificuldades, o desempenho do Método dos Elementos de Contorno é superior, tanto no cálculo da variável básica, quanto na sua derivada. Para tanto, são resolvidos problemas bidimensionais referentes a membranas elásticas, esforços em barras devido ao peso próprio e problemas de determinação de frequências naturais em problemas acústicos em domínios fechados, dentre outros apresentados, utilizando malhas com diferentes graus de refinamento, além de elementos lineares com funções de bases radiais para o MECID e funções base de interpolação polinomial de grau (um) para o MEF. São geradas curvas de desempenho através do cálculo do erro médio percentual para cada malha, demonstrando a convergência e a precisão de cada método. Os resultados também são comparados com as soluções analíticas, quando disponíveis, para cada exemplo resolvido neste trabalho.
Resumo:
Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.