997 resultados para Poiseuille Flow
Resumo:
We present the linear stability analysis of horizontal Poiseuille flow in a fluid overlying a porous medium with anisotropic and inhomogeneous permeability. The generalized Darcy model is used to describe the flow in the porous medium with the Beavers-Joseph condition at the interface of the two layers and the eigenvalue problem is solved numerically. The effect of major system parameters on the stability characteristics is addressed in detail. It is shown that the anisotropic and inhomogeneous modulation of the permeability of the underlying porous layer provides an effective means for passive control of the flow stability.
Resumo:
The instability of Poiseuille flow in a fluid-porous system is investigated. The system consists of a fluid layer overlying porous media and is subjected to a horizontal plane Poiseuille flow. We use Brinkman's model instead of Darcy's law to describe the porous layer. The eigenvalue problem is solved by means of a Chebyshev collocation method. We study the influence of the depth ratio (d) over cap and the Darcy number delta on the instability of the system. We compare systematically the instability of Brinkman's model with the results of Darcy's model. Our results show that no satisfactory agreement between Brinkman's model and Darcy's model is obtained for the instability of a fluid-porous system. We also examine the instability of Darcy's model. A particular comparison with early work is made. We find that a multivalued region may present in the (k, Re) plane, which was neglected in previous work. Here k is the dimensionless wavenumber and Re is the Reynolds number. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000643]
Resumo:
The viscosity-temperature relation is determined for the water models SPC/E, TIP4P, TIP4P/Ew, and TIP4P/2005 by considering Poiseuille flow inside a nano-channel using molecular dynamics. The viscosity is determined by fitting the resulting velocity profile (away from the walls) to the continuum solution for a Newtonian fluid and then compared to experimental values. The results show that the TIP4P/2005 model gives the best prediction of the viscosity for the complete range of temperatures for liquid water, and thus it is the preferred water model of these considered here for simulations where the magnitude of viscosity is crucial. On the other hand, with the TIP4P model, the viscosity is severely underpredicted, and overall the model performed worst, whereas the SPC/E and TIP4P/Ew models perform moderately.
Resumo:
We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.
Resumo:
The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.
Resumo:
Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.
Resumo:
The laminar flow of a fairly concentrated suspension (in which the volume fraction Z of the solid particles < 0.4) in a spatially varying periodically curved pipe has been examined numerically. Unlike the case of interacting suspension flows, the particles are found to flow in a well-mixed fashion, altering both the axial and circumferential velocities and consequently the fluid flux in the tube, depending on their diffusivity and inertia. The magnitude of shear stress at the wall is enhanced, suggesting that, if applied to vascular system, the vascular wall could be prone to ulceration during pathological situations like polycythemia. The delay in adaptation of the deviation in Poiseuille flow velocity to the curvature changes is also discussed in detail.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (ρVR / η), the ratio of the viscosities of the wall and fluid ηr = (ηs/η), the ratio of radii H and the dimensionless velocity Γ = (ρV2/G)1/2. Here ρ is the density of the fluid, G is the coefficient of elasticity of the wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter ε = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate do), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctruations due to the Reynolds strees. There is an O(ε1/2) correction to the growth rate, s(1), due to the presence of a wall layer of thickness ε1/2R where the viscous stresses are O(ε1/2) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Γ and wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(ε) correction to the growth rate s(2) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s(2) increases [is proportional to] (H − 1)−2 for (H − 1) [double less-than sign] 1 (thickness of wall much less than the tube radius), and decreases [is proportional to] (H−4 for H [dbl greater-than sign] 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube.
Resumo:
Instabilities of fluid flows have traditionally been investigated by normal mode analysis, i.e. by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In this paper we study the instabilities of two-dimensional Couette flow of a polymeric fluid in the framework of non-modal stability theory rather than normal mode analysis. A power-law model is used to describe the polymeric liquid. We focus on the response to external excitations and initial conditions by examining the pseudospectra structures and the transient energy growths. For both Newtonian and non-Newtonian flows, the results show that there can be a rather large transient growth even though the linear operator of Couette flow has no unstable eigenvalue. The effects of non-Newtonian viscosity on the transient behaviors are examined in this study. The results show that the "shear-thinning/shear-thickening" effect increases/decreases the amplitude of responses to external excitations and initial conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
WThe capillary flow alignment of the thermotropic liquid crystal 4-n-octyl-4′-cyanobiphenyl in the nematic and smectic phases is investigated using time-resolved synchrotron small-angle x-ray scattering. Samples were cooled from the isotropic phase to erase prior orientation. Upon cooling through the nematic phase under Poiseuille flow in a circular capillary, a transition from the alignment of mesogens along the flow direction to the alignment of layers along the flow direction (mesogens perpendicular to flow) appears to occur continuously at the cooling rate applied. The transition is centered on a temperature at which the Leslie viscosity coefficient α3 changes sign. The configuration with layers aligned along the flow direction is also observed in the smectic phase. The transition in the nematic phase on cooling has previously been ascribed to an aligning-nonaligning or tumbling transition. At high flow rates there is evidence for tumbling around an average alignment of layers along the flow direction. At lower flow rates this orientation is more clearly defined. The layer alignment is ascribed to surface-induced ordering propagating into the bulk of the capillary, an observation supported by the parallel alignment of layers observed for a static sample at low temperatures in the nematic phase.
Resumo:
Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).